Видання зареєстровані авторами шляхом самоархівування

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Багатошарова модель та метод навчання для детектування шкідливого трафіку на основі ансамблю дерев рішень
    (Національний аерокосмічний університет ім. М.Є. Жуковського "Харківський авіаційний інститут", 2020) Москаленко, В`ячеслав Васильович; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Zaretskyi, Mykola Oleksandrovych; Москаленко, Альона Сергіївна; Moskalenko, Alona Serhiivna; Кудрявцев, Антон Михайлович; Kudriavtsev, Anton Mykhailovych; Семашко, Віктор Анатолійович; Semashko, Viktor Anatoliiovych
    Запропоновано модель і метод навчання багатошарового екстрактора ознак та вирішувальних правил для детектора шкідливого трафіку. Модель екстрактора ознак основана на згортковій розріджено кодуючій мережі, розріджений кодер якої апроксимується моделлю регресійного випадкового лісу згідно принципів дистиляції знань. При цьому розроблено алгоритм зростаючого розріджено кодуючого нейронного газу для навчання екстрактора ознак без вчителя з автоматичним визначення необхідної кількості ознак на кожному шарі. На етапі навчання екстрактора ознак для реалізації розрідженого кодування використано жадібний L0-регуляризований метод ортогонального узгодженого переслідування (Orthogonal Matching Pursuit), а під час дистиляції знань додатково використовувався L1- регуляризований метод найменших кутів (Least angle regression algorithm). Завдяки ефекту редукції причини отримані ознаки є некорельованими, а сформований ознаковий опис є стійким до завад та змагальних (Adveserial) атак. Запропонований екстрактор ознак навчається без вчителя для розділення пояснюючих факторів і дозволяє з максимальною ефективністю використати нерозмічені навчальні дані, обсяг яких, як правило, досить великий. Як модель вирішувальних правил запропоновано використовувати двійковий кодер спостережень на основі ансамблю дерев рішень та інформаційноекстремальні роздільні замкнені гіперповерхні (контейнери) класів, що відновлюються в радіальному базисі двійкового простору Хеммінга. Додавання кодуючих дерев відбувається за принципом бустінгу, а радіус контейнерів класів оптимізується шляхом прямого перебору. Інформаційно-екстремальний класифікатор характеризується низькою обчислювальною складністю та високою узагальнюючою здатністю для малих наборів розмічених навчальних даних. Результати верифікації навченої моделі на відкритих тестових наборах даних CTU підтверджують придатність запропонованих алгоритмів для практичного застосування, оскільки точність розпізнавання шкідливого трафіку становить 96,1 %.
  • Item
    Інформаційна технологія машинного навчання системи календарного планування для організаційно-виробничого комплексу
    (Сумський державний університет, 2023) Грицина, А.С.
    Розроблено та програмно реалізовано у середовищі прикладних програм для розв’язання задач технічних обчислень – MATLAB алгоритм інформаційно-екстремального машинного навчання системи об’ємно-календарного планування з паралельною оптимізацією контрольних допусків.
  • Item
    Information-extreme machine training system of functional diagnosis system with hierarchical data structure
    (National University "Zaporizhzhia Polytechnic", 2022) Shelehov, I.V.; Барченко, Наталія Леонідівна; Барченко, Наталья Леонидовна; Barchenko, Nataliia Leonidivna; Прилепа, Дмитро Вікторович; Прилепа, Дмитрий Викторович; Prylepa, Dmytro Viktorovych; Бібик, Мирослав Віталійович; Бибик, Мирослав Витальевич; Bibyk, Myroslav Vitaliiovych
    Context. The problem of information-extreme machine learning of the functional diagnosis system is considered by the example of recognizing the technical state of a laser printer by typical defects of the printed material. The object of the research is the process of hierarchical machine learning of the functional diagnosis system of an electromechanical device. Objective. The main objective is to improve the functional efficiency of machine learning during functional diagnostics system retraining using automatically forming a new hierarchical data structure for an expanded alphabet of recognition classes. Method. A method of information-extreme hierarchical machine learning of the system of functional diagnosis of a laser printer based on typical defects of the printed material is proposed. The method was developed with functional approach of modeling the cognitive processes of natural intelligence, which makes it possible to give the diagnostic system the properties of adaptability under arbitrary initial conditions for the formation of images of printing defects and flexibility during retraining of the system due to an increase in the power of the alphabet of recognition classes. The method is based on the principle of maximizing the amount of information in the process of machine learning. The process of information-extreme machine learning is considered as an iterative procedure for optimizing the parameters of the functioning of the functional diagnostics system according to the information criterion. As a criterion for optimizing machine learning parameters, a modified Kullback’s information measure is considered, which is a functional of the exact characteristics of classification solutions. According to the proposed categorical functional model, an information-extreme machine learning algorithm has been developed based on a hierarchical data structure in the form of a binary decomposition tree. The use of such a data structure makes it possible to split a large number of recognition classes into pairs of nearest neighbors, for which the optimization of machine learning parameters is carried out according to a linear algorithm of the required depth. Results. Information, algorithmic software for the system of functional diagnostics of a laser printer based on images of typical defects in printed material has been developed. The influence of machine learning parameters on the functional efficiency of the system of functional diagnostics of a laser printer based on images of defects in printed material has been investigated. Conclusions. The results of physical modeling have confirmed the efficiency of the proposed method of information-extreme machine learning of the system of functional diagnosis of a laser printer based on typical defects in printed material and can be recommended for practical use. The prospect of increasing the functional efficiency of information-extremal learning of the functional diagnostics system is to increase the depth of machine learning by optimizing additional parameters of the system’s functions, including the parameters of the formation of the input training matrix.
  • Item
    Багатоетапний метод глибинного навчання з попереднім самонавчанням для класифікаційного аналізу дефектів стічних труб
    (National Aerospace University "Kharkiv Aviation Institute", 2021) Москаленко, Владислав Вікторович; Москаленко, Владислав Викторович; Moskalenko, Vladyslav Viktorovych; Зарецький, Микола Олександрович; Зарецкий, Николай Александрович; Zaretskyi, Mykola Oleksandrovych; Москаленко, Альона Сергіївна; Москаленко, Алена Сергеевна; Moskalenko, Alona Serhiivna; Коробов, Артем Геннадійович; Коробов, Артем Геннадьевич; Korobov, Artem Hennadiiovych; Ковальський, Ярослав Юрійович; Ковальский, Ярослав Юрьевич; Kovalskyi, Yaroslav Yuriiovych
    Розроблено багатоетапний метод машинного навчання з попереднім самонавчанням для класифікаційного аналізу дефектів на стінках стічних труб за зображеннями відеоінспекції. Об’єктом дослідження є процес розпізнавання дефектів на стінках стічних труб. Предметом дослідження є метод машинного навчання для класифікаційного аналізу дефетів стічних труб на зображеннях відеоінспекції за умов обмеженого та незбалансованого набору розмічених навчальних даних. Запропоновано п’ятиетапний алгоритм навчання класифікатора. На першому етапі відбувається контрастне навчання з використанням екземпляр-прототипної контрасної функції втрат, де для вимірювання схожості закодованих зразків використовується нормалізована відстань Евкліда. На другому етапі розглядаються два варіанти регуляризованої функції втрат – триплетна функція NCA та контрастноцентрована функція. Регуляризуюча складова на другому етапі навчання використовується для штрафування за помилку округлення вихідного вектора ознак до дискретного виду і забезпечує реалізацію інформаційного пляшкового горла. На наступному етапі здійснюється обчислення двійкового коду кожного класу для реалізації кодів, що виправляють помилки, але з урахуванням структури класів і відношень між їх ознаками. Отриманий еталонний вектор кожного класу є цільовою розміткою зображення для навчання з використанням крос-ентропійної функції втрат. Останній етап навчання здійснює оптимізацією параметрів вирішувальних правил за інформаційним критерієм для врахування дисперсії розподілу класів в двійковому просторі Хеммінга. Для порівняння результатів навчання на різних етапах та в рамках різного підходу використовується мікро-усереднена метрика F1, що обчислюється на тестових даних. Результати, отримані на відкритому наборі даних Sewer-ML, підтверджують придатність запропонованого методу навчання до практичного використання, отримане значення F1- метрики дорівнює 0,977. Було показано, що запропонований метод забезпечує збільшення значення мікро-усередненої метрики F1 на 9 % порівняно з результатами, отриманими традиційним методом навчання.
  • Item
    Information-extreme machine training of on-board recognition system with optimization of RGB-component digital images
    (National Aerospace University «Kharkiv Aviation Institute», 2021) Naumenko, I.; Мироненко, Микита Ігорович; Мироненко, Никита Игорович; Myronenko, Mykyta Ihorovych; Savchenko, T.
    The research increases the recognition reliability of ground natural and infrastructural objects by use of an autonomous onboard unmanned aerial vehicle (UAV). An information-extreme machine learning method of an autonomous onboard recognition system with the optimization of RGB components of a digital image of ground objects is proposed. The method is developed within the framework of the functional approach to modeling cognitive processes of natural intelligence at the formation and acceptance of classification decisions. This approach, in contrast to the known methods of data mining, including neuro-like structures, provides the recognition system with the properties of adaptability to arbitrary initial conditions of image formation and flexibility in retraining the system. The idea of the proposed method is to maximize the information capacity of the recognition system in the machine learning process. As a criterion for optimizing machine learning parameters, a modified Kullback information measure was used, this informational criterion is the functionality of exact characteristics. As optimization parameters, the geometric parameters of hyperspherical containers of recognition classes and control tolerances for recognition signs were considered, which played the role of input data quantization levels when transforming the input Euclidean training matrix into a working binary training matrix using admissible transformations of a working training matrix the offered machine learning method allows to adapt the input mathematical description of recognition system to the maximum full probability of the correct classification decision acceptance. To increase the depth of information-extreme machine learning, optimization was conducted according to the information criterion of the weight coefficients of the RGB components of the brightness spectrum of ground object images. The results of physical modeling on the example the recognition of terrestrial natural and infrastructural objects confirm the increase in functional efficiency of information-extreme machine learning of on-board system at optimum in information understanding weight coefficients of RGB-components of terrestrial objects image brightness.
  • Item
    Модель та метод навчання для класифікаційного аналізу рівня води в стічних трубах за даними відео інспекції
    (Національний аерокосмічний університет "Харківський авіаційний інститут", 2021) Москаленко, В`ячеслав Васильович; Москаленко, Вячеслав Васильевич; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Зарецкий, Николай Александрович; Zaretskyi, Mykola Oleksandrovych; Коробов, Артем Геннадійович; Коробов, Артем Геннадьевич; Korobov, Artem Hennadiiovych; Ковальський, Ярослав Юрійович; Ковальский, Ярослав Юрьевич; Kovalskyi, Yaroslav Yuriiovych; Шаєхов, Артур Фанісович; Шаехов, Артур Фанисович; Shaiekhov, Artur Fanisovych; Семашко, Віктор Анатолійович; Семашко, Виктор Анатольевич; Semashko, Viktor Anatoliiovych; Панич, Андрій Олександрович; Паныч, Андрей Александрович; Panych, Andrii Oleksandrovych
    Розроблено та досліджено модель та метод навчання для класифікаційного аналізу рівня води на кадрах відео інспекції стічних труб. Об’єктом дослідження є процес розпізнавання рівня води з урахуванням просторово-часового контексту під час інспекції стічних труб. Предметом дослідження є модель та метод машинного навчання для класифікаційного аналізу рівня води на відео-послідовностях інспекції труб за умов обмеженого та незбалансованого набору навчальних даних. Запропоновано чотирьохетапний алгоритм навчання класифікатора. На першому етапі навчання відбувається навчання з нормалізованою триплетною функцією втрат та регуляризуючою складовою для штрафування за помилку округлення вихідного сигналу мережі до двійкового коду. Наступний етап потрібний для визначення двійкового коду класу відповідно до принципів завадозахищеного кодування з самовиправленням помилок, але з урахуванням внутрікласових і міжкласових відношень. Обчислений еталонний вектор кожного класу використовується як цільова розмітка зразка для подальшого навчання з використанням об’єднаної крос-ентропійної функції втрат. Останній етап машинного навчання пов’язаний з оптимізацією параметрів вирішувальних правил за інформаційним критерієм для врахування меж відхилення двійкового подання спостережень кожного класу від відповідних еталонних векторів. Як модель класифікатора розглядається поєднання 2D згорткового екстрактора ознак кадру з темпоральною мережею для аналізу міжкадрових залежностей. При цьому виконується порівняння різних варіантів темпоральної мережі. Розглядаються 1D регулярна згорткова мережа з дірявими згортками, 1D каузальна згорткова мережа з дірявими згортками, рекурентна LSTM-мережа, рекурентна GRU-мережа. Порівняння ефективності моделей відбувається за мікро-усередненою метрикою F1, що обчислюється на тестовій вибірці. Результати, отримані на наборі даних від компанії Ace Pipe Cleaning (Канзас Сіті, США), підтверджують придатність моделі і методу навчання до практичного використання, отримане значення F1-метрики дорівнює 0,88. При цьому результати навчання за запропонованим методом порівнювалися з результатами, отриманими традиційним методом. Було показано, що запропонований метод забезпечує збільшення значення мікро-усередненої метрики F1 на 9 %.