Факультет технічних систем і енергоефективних технологій (ТеСЕТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/25
Browse
25 results
Search Results
Item An overview of robot applications in automotive industry(Published by ELSEVIER, 2021) Bartoš, M.; Bulej, V.; Bohušík, M.; Stanček, J.; Іванов, Віталій Олександрович; Ivanov, Vitalii Oleksandrovych; Macek, P.The paper deals with an overview of industrial robot usage possibility in automotive industry which nowadays is the most important customer of industrial robotic market. The first part of paper describes the situation of industrial robot usage and offers an overview of application of robots in world industry. Later we deal with the most common applications of robots, especially in the automotive industry, as well as trends and perspectives on the future of automotive robotics. Finally, there was presented a model task from real industrial practice in form of specific project overview about robotized tightening of screws on the production line of car seats at the end of the article.Item Vapor Overproduction Condition Monitoring in a Liquid–Vapor Ejector(MDPI, 2022) Шарапов, Сергій Олегович; Sharapov, Serhii Olehovych; Mižáková, Ja.; Гусєв, Данило Максимович; Husiev, Danylo Maksymovych; Панченко, Віталій Олександрович; Panchenko, Vitalii Oleksandrovych; Іванов, Віталій Олександрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych; Židek, K.We consider the influence of vapor content in the mixed flow leaving a liquid-vapor ejector on the energy efficiency of a vacuum unit. As shown by numerical studies of liquid-vapor ejectors, this issue is important as vapor overproduction, which accompanies the process of secondary flow ejection, directly impacts the efficiency of the working process of both the liquid-vapor ejector and the vacuum unit as a whole. The greater the degree of vapor overproduction, the greater the load on the vapor phase of the separator, which is part of the vacuum unit. In addition, the liquid phase must be returned to the cycle to ensure the constancy of the mass flow rate of the working fluid of the primary flow. Our numerical study results revealed the rational value of the degree of vapor overproduction at which the efficiency of the liquid–vapor ejector was maximized, and the amount of additional working fluid that needed to enter the cycle of the vacuum unit was minimal. Experimental condition monitoring studies on the liquid–vapor ejector were carried out on plane-parallel transparent models with different flow path geometries. Through experimental studies, we confirmed and adjusted the values of the achievable efficiency of the working process of a liquid–vapor ejector, depending on the degree of vapor overproduction. Using a comparative analysis of liquid–vapor ejectors with different flow path geometries, differences were revealed in their working processes, which consisted of the degree of completion of the mixing of the working media of primary and secondary flows. To determine the feasibility of using liquid–vapor ejectors with different flow path geometries, exergy analysis was performed, resulting in achievable efficiency indicators.Item A simulation study of Industry 4.0 factories based on the ontology on flexibility with using FlexSimr software(Production Engineering Committee of the Polish Academy of Sciences, Polish Association for Production Management, 2020) Luscinski, S.; Іванов, Віталій Олександрович; Ivanov, Vitalii OleksandrovychThe main aim of the article is to develop a simulation model of flexible manufacturing system with applying the ontology on flexibility. Designing manufacturing systems matching both production and market requirements becomes more and more challenging due to the variability of demand for a large number of products made in many variants and short lead times. Manufacturing flexibility is widely recognised as a proven solution to achieve and maintain both the strategical and operational goals of the companies exposed to global competition. Generic simulation model of flexible manufacturing system was developed using FlexSimr 3D software, then the example data were used to demonstrate the developed model applicability. “The Ontology on Flexibility” was applied for evaluation of achieved flexibility of manufacturing system.Item Ensuring the economic efficiency of enterprises by multi-criteria selection of the optimal manufacturing process(Production Engineering Committee of the Polish Academy of Sciences, Polish Association for Production Management, 2020) Kotliar, A.; Basova, Ye.; Іванов, Віталій Олександрович; Ivanov, Vitalii Oleksandrovych; Murzabulatova, O.; Vasyltsova, S.; Litvynenko, M.; Zinchenko, O.Technological assurance and improvement of the economic efficiency of production are the first-priority issues for the modern manufacturing engineering area. It is possible to achieve a higher value of economic efficiency in multiproduct manufacturing by multicriteria optimization. A set of optimality criteria based on technological and economic indicators was defined with the aim of selecting the optimal manufacturing process. Competitive variants and a system of optimization were developed and investigated. A comparative analysis of the optimality criteria and their influence on the choice of optimal machining processes was carried out. It was determined that the batch of parts made an impact on the selection of the manufacturing process.Item An Increase in the Energy Efficiency of R744 Heat-Using Thermotransformers(MDPI, 2023) Арсеньєв, В`ячеслав Михайлович; Arseniev, Viacheslav Mykhailovych; Piteľ, J.; Король, Олександр Сергійович; Korol, Oleksandr Serhiiovych; Шарапов, Сергій Олегович; Sharapov, Serhii Olehovych; Mižáková, J.; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych; Іванов, Віталій Олександрович; Ivanov, Vitalii OleksandrovychThis article deals with improving waste heat transformation in heat-using thermotransformers. Based on the directives of the European Commission on refrigeration equipment requirements, the possibility of using carbon dioxide (R744) in heat-using thermotransformers was evaluated. The possibility of the effective use of heat-using thermotransformers operating within the Chistyakov–Plotnikov cycle in the heat pump mode was assessed. As a result, a comparative analysis was performed with existing modern plants for combined cycles with an expander, for the expansion of CO2 in saturated steam, a suction gas heat exchanger (SGHE), and a compressor–expander unit. The design schemes with a throttling device and an SGHE were selected for a comparative analysis. As a result, calculation models for evaluating the operating parameters for the initial and proposed design schemes were developed. These models allow for evaluating thermodynamic and mode parameters for heat-reducing thermotransformers. They also allow for ensuring energy efficiency indicators and conversion factors for each cycle. Overall, the dependencies for the cycle conversion ratio for the pressure increase stage in the compressor were obtained for various under-recovery rates. Moreover, the cycle conversion ratios for the proposed design schemes were obtained depending on the discharge pressure of the first compressor. The proposed design schemes allow for increasing the energy efficiency of heat-using thermotransformers by an average of 23%, depending on the suction pressure in the compressor.Item Development of Flexible Fixtures with Incomplete Locating: Connecting Rods Machining Case Study(MDPI, 2022) Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Botko, F.; Dehtiarov, I.; Kočiško, M.; Evtuhov, A.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Trojanowska, J.The rapid development of manufacturing in recent years has led to a significant expansion of the technological capabilities of modern metal-cutting equipment. Therefore, the modern approach to intensifying production requires an advanced fixture design. Design and manufacture of flexible fixtures capable of machining similar shapes and sizes of complex geometry parts reduce setup time. The article aims to design flexible fixtures for parts such as one-piece connecting rods under incomplete locating conditions. The advantages are the minimum number of parts and tool availability for multi-axis machining connecting rods in one setup. This approach, combined with up-to-date machining centers and industrial robots, can increase the production efficiency of manufacturing non-removable connecting rods. This effectiveness is in a decrease in the number of operations by 5–7 times, fixtures—by 3–4 times, and machine tools—by 3–5 times, depending on the type of a non-removable connecting rod and its design features. The numerical simulation results of the proposed fixture design confirmed the comprehensive technological capabilities and dynamic characteristics. Particularly, a decrease in displacements and oscillation amplitudes up to 7% compared to the full-basing locating chart was provided. It is determined that the system “fixture–workpiece” entirely meets all the strength, accuracy, and rigidity parameters, which allows you to perform machining with intensive cutting modes. The amplitudes of oscillations do not exceed the tolerances on the dimensions of these surfaces, established by requirements for non-removable connecting rods, and all displacements are elastic. During numerical simulation, the workpiece position remained stable at all machining steps.Item Classification of Separation Equipment by Design and Technological Features(European Alliance for Innovation, 2022) Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Caganova, D.; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych; Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Лобов, Євгеній Сергійович; Лобов, Евгений Сергеевич; Lobov, Yevhenii Serhiiovych; Golokhvost, O.Production range increasing causes many obstacles to ensure the work of the chemical industry. Production must respond quickly to the slightest change and must be customer-oriented. Due to this, there is a general trend towards increasing production flexibility by introducing modular systems. Thus, there is a need to classify existing solutions to develop flexible systems based on them. The article contains the analysis of chemical industry development tendencies, a methodology of research of modular separation devices, and their classification by design and technological features. The study result is a design and technological classification with a code that can optimize various separation devices. As a result of experimental research, preliminary and acceptance tests of experimental samples, the main hydrodynamic and separation characteristics of modular separation devices and combined multifunctional separators are determined: hydraulic resistance 0.15–2.00 kPa for units and 15–30 kPa for devices; effective capture of particles from the size of 5 μm; efficiency of separate stages of modular separation devices is about 70–90 %; efficiency of combined multifunctional separators is approximately 99.5–99.9 %. The offered multipurpose separators equipped with dynamically regulated modular separation devices do not concede to world analogs by the main technical characteristics of combined multistage separators worldwide.Item Using Regression Analysis for Automated Material Selection in Smart Manufacturing(MDPI, 2022) Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Pitel, J.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Берладір, Христина Володимирівна; Берладир, Кристина Владимировна; Berladir, Khrystyna Volodymyrivna; Mizakova, J.; Колос, Віталій Олександрович; Колос, Виталий Александрович; Kolos, Vitalii Oleksandrovych; Trojanowska, J.In intelligent manufacturing, the phase content and physical and mechanical properties of construction materials can vary due to different suppliers of blanks manufacturers. Therefore, evaluating the composition and properties for implementing a decision-making approach in material selection using up-to-date software is a topical problem in smart manufacturing. Therefore, the article aims to develop a comprehensive automated material selection approach. The proposed method is based on the comprehensive use of normalization and probability approaches and the linear regression procedure formulated in a matrix form. As a result of the study, analytical dependencies for automated material selection were developed. Based on the hypotheses about the impact of the phase composition on physical and mechanical properties, the proposed approach was proven qualitatively and quantitively for carbon steels from AISI 1010 to AISI 1060. The achieved results allowed evaluating the phase composition and physical properties for an arbitrary material from a particular group by its mechanical properties. Overall, an automated material selection approach based on decision-making criteria is helpful for mechanical engineering, smart manufacturing, and industrial engineering purposes.Item Flow Modeling in a Vortex Chamber of a Liquid–Steam Jet Apparatus(MDPI, 2022) Мерзляков, Юрій Сергійович; Мерзляков, Юрий Сергеевич; Merzliakov, Yurii Serhiiovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Ochowiak, M.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Agarwal, P.The article investigated the flow of boiling streams through a nozzle with an oblique cut. Due to this flow organization, deviation from the nozzle axis at the vortex chamber inlet occurred. The study of flow modeling in the inlet section was carried out. The flow design and the calculation scheme of the vortex liquid–steam jet apparatus were proposed. Analytical expressions between the main operating parameters were obtained according to the developed mathematical model. A recommended oblique-cut angle for the active-flow nozzle was evaluated considering the transition through the first critical section based on the tangential velocity flow model. Validation of the mathematical model in the inlet section of the vortex chamber was provided based on the comparison with available experimental data. Flow visualization in the inlet section of the vortex chamber was obtained. The assumption of uneven flow distribution was confirmed experimentally. Overall, the boiling liquid flow was implemented in the active flow nozzle. The obtained scientific and practical results help to determine geometric parameters and physical characteristics of the vortex-type liquid–steam jet apparatus at the design stage. The obtained results were implemented to modernize vacuum units based on vortex type liquid–steam jet apparatuses.Item Locating Chart Choice Based on the Decision-Making Approach(MDPI, 2022) Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Botko, F.; Kolos, V.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Hatala, M.; Antosz, K.; Trojanowska, J.Modern manufacturing engineering requires quick and reasonable solutions during the production planning stage, ensuring production efficiency and cost reduction. This research aims to create a scientific approach to the rational choice of a locating chart for complexly shaped parts. It is an important stage during the manufacturing technology and fixture design process. The systematization of the designed and technological features of complexly shaped parts and the definition of the features that impact a locating chart create the fundamentals for justification. A scientific approach has been developed using the complex combination of the part’s features and a decision-making approach using the example of bracket-type parts. The matrix of design and technological features of parts was developed including steel AISI 3135 and cast iron DIN 1691. The classification of locating charts for bracket-type parts was defined. A mathematical model of the rational choice of the locating chart according to the structural code of the workpiece was verified in case studies from the practice. As a result, a decision-making approach was applied to the rational choice of the locating chart for any bracket-type part. The proposed solutions improve the production planning stage for machine building, automotive, and other industries.
- «
- 1 (current)
- 2
- 3
- »