Факультет технічних систем і енергоефективних технологій (ТеСЕТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/25
Browse
2 results
Search Results
Item Technologies for Environmental Safety Application of Digestate as Biofertilizer(MDPI, 2022) Аблєєва, Ірина Юріївна; Аблеева, Ирина Юрьевна; Ablieieva, Iryna Yuriivna; Бережна, Ірина Олексіївна; Бережная, Ирина Алексеевна; Berezhna, Iryna Oleksiivna; Бережний, Дмитрій Михайлович; Бережной, Дмитрий Михайлович; Berezhnyi, Dmytrii Mykhailovych; Enrich Prast, A.; Geletuha, G.; Луценко, Сергій Вікторович; Луценко, Сергей Викторович; Lutsenko, Serhii Viktorovych; Янченко, Ілона Олегівна; Янченко, Илона Олеговна; Yanchenko, Ilona Olehivna; Carraro, G.The purpose of the paper is to determine the environmentally safe and economically feasible technology of biofertilizer production from the digestate including dewatering process. Methodological basis is based on the systematic approach to the determination of factors effected on the distribution of nutrients and pollutants between liquid and solid fractions after digestate separation. The paper analyzes modern technologies aimed at dewatering the digestate and reduction of its volume, showed their effectiveness. These technologies allow expanding the opportunities for commercialization of the digestate, increasing the cost of its transportation and application to the soil instead of complex fertilizers, using some valuable products. The results of the study showed that the ecological quality of the digestate is the highest as well as co-digested thermally pre-treated feedstock is used for solid-liquid separation in centrifuge with polymer addition as post-treatment approach to the flocculation. In order to increase efficiency of biofertilizer application the technological scheme of production process of granular fertilizers from digestate was proposed. Special feature of this scheme is in the use of phosphogypsum binder for the production of organo-mineral fertilizer that contributes phosphogypsum recycling in the waste management system.Item Biotechnological Reclamation of Oil-Polluted Soils(Bentus, 2021) Аблєєва, Ірина Юріївна; Аблеева, Ирина Юрьевна; Ablieieva, Iryna Yuriivna; Пляцук, Леонід Дмитрович; Пляцук, Леонид Дмитриевич; Pliatsuk, Leonid Dmytrovych; Бережна, Ірина Олексіївна; Бережная, Ирина Алексеевна; Berezhna, Iryna Oleksiivna; Malovanyy, M.S.The aim of the paper was to determine the efficiency of petroleum hydrocarbons (PHs) degradation by developed bacterial consortium during bioremediation of oil-contaminated soils caused by accidental oil spills. The soil samples were collected from three different areas near the Bugruvate field of the Dnieper-Donets oil and gas region, Sumy region, Ukraine. The total petroleum hydrocarbon was determined by conducting measurements using a gravimetric method. Gas chromatographic analysis was performed for determination of polycyclic aromatic hydrocarbons. The level of oil contamination follows an increasing preferential order: Sample 1 < Sample 2 < Sample 3 (5, 10 and 15 g∙kg-1, respectively). The soil samples comprised different concentrations of PHs including n-alkanes, fluorine, anthracene, phenanthrene, pyrene, toluene, xylene, benzene and other PHs. The results of research indicated that the maximum oil degradation rate at the level of 80% was set at Cin within 4–8 g∙kg-1 and τ = 70 days, under natural condition. In order to improve the efficiency of bioremediation of oil-contaminated soils, bioaugmentation was performed using the developed preparation of such bacteria and fungi strains as Pseudoxanthomonas spadix, Pseudomonas aeruginosa, Rhodococcus opacus, Acinetobacter baumannii, Bacillus cereus, Actinomyces sp., Mycobacterium flavescens. The results showed 100% of oil concentration was assimilated after 20, 25 and 35 days for the soil samples with initial hydrocarbon concentrations at the level 5, 10 and 15 g∙kg-1, respectively. The bacterial consortium application (bioaugmentation) exhibited high efficiency compared to the indigenous microflora in the oil biodegradation. The optimal growth condition for the bacteria in this study can be set as follows: pH = 3–11, wide temperature range 0–35°C.