Факультет технічних систем і енергоефективних технологій (ТеСЕТ)

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/25

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    The potential of organic waste as a substrate for anaerobic digestion in Ukraine: trend definitions and environmental safety of the practices
    (Lviv Polytechnic National University, 2021) Черниш, Єлізавета Юріївна; Chernysh, Yelyzaveta Yuriivna; Shtepa, V.; Рой, Ігор Олександрович; Roi, Ihor Oleksandrovych; Чубур, Вікторія Сергіївна; Chubur, Viktoriia Serhiivna; Скворцова, Поліна Олексіївна; Skvortsova, Polina Oleksiivna; Ivlieva, A.; Danilov, D.
    This article is devoted to the analysis and prospects of using different types of organic waste to achieve environmental goals. Due to the unique climate and natural resources, Ukraine has significant potential for biomass, the processing of which should solve urgent problems with the disposal of waste, as well as the production of alternative energy sources and biofertilizers. The preferred substrates for anaerobic digestion in Ukraine, considering the technological feasibility, availability, and volume are animal manure (cattle, pigs), bird droppings, plant residues, industrial sludge, common sludges. After analyzing the statistics for 2015-2019, the groups of dominant wastes were identified, and with the help of the built-in function "TREND," the forecast of the waste potential with an organic component for 2021-2026 was constructed. Examining the obtained indicators for different types of waste, the reasons for the tendency of decrease or increase in their formation in the next five years were revealed. The direction of enhancing the sustainability of bioenergy, achieving environmental goals through the bioprocessing of organic waste associated with the ecological safety of production processes were discussed.
  • Item
    Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments
    (MDPI, 2022) Чубур, Вікторія Сергіївна; Чубур, Виктория Сергеевна; Chubur, Viktoriia Serhiivna; Danylov, D.; Черниш, Єлізавета Юріївна; Черныш, Елизавета Юрьевна; Chernysh, Yelyzaveta Yuriivna; Пляцук, Леонід Дмитрович; Пляцук, Леонид Дмитриевич; Pliatsuk, Leonid Dmytrovych; Shtepa, V.; Haneklaus, N.; Roubik, H.
    This article presents future trends in research using microbiological methods to intensify bioprocesses for biogas production. The pretreatment by combinations of physical and chemical methods, such as cavitation and electrolysis, is considered. The approach of the article involved reviewing the residual area on the intensification technologies of anaerobic digestion with current methods to improve the quality and quantity of biogas. The most valuable reported positive results of the pretreatment of biological raw materials in the cavitation process were reviewed and are presented here. A model of the effect of electrolysis on the species diversity of bacteria in anaerobic digestion was developed, and changes in the dominance of the ecological and trophic systems were revealed on the basis of previous studies. The stimulating effect on biogas yield, reduction in the stabilization period of the reactor, and inactivation of microorganisms at lower temperatures is associated with different pretreatment methods that intensify anaerobic digestion. More research is recommended to focus on the electrolysis treatment of different types of waste and their ratios with optimization of regime parameters, as well as in combination with other pretreatments to produce biomethane and biohydrogen in larger quantities and in better qualities.
  • Item
    Effect of Electrolysis on Activated Sludge during the Hydrolysis and Acidogenesis Stages in the Anaerobic Digestion of Poultry Manure
    (MDPI, 2022) Черниш, Єлізавета Юріївна; Черныш, Елизавета Юрьевна; Chernysh, Yelyzaveta Yuriivna; Balintova, M.; Shtepa, V.; Чубур, Вікторія Сергіївна; Чубур, Виктория Сергеевна; Chubur, Viktoriia Serhiivna; Junakova, N.
    This paper focuses on the study of the effect of electrolysis on activated sludge in a microbial electrolysis cell (MEC) under the anaerobic digestion of poultry manure. This study was conducted using a bioreactor design with and without electrodes (conventional condition). Measurements of pH, redox potential (ORP), and total dissolved solids were carried out, as was the microscopy of activated sludge during treatment and gasometry. There was an increase in the yields of CH4 and CO2 compared to conventional conditions. Thus, on the 14th day, there was an increase in the CH4 yield to 35.1% compared with the conventional conditions—31.6%—as well as in the CO2 yield to 53.5% compared with the cell without electrodes—37.7%. Visually, the microscopy of anaerobic activated sludge showed changes in the aggregation process itself, with the formation of cells of clusters of microorganism colonies with branches of a delineated shape. ORP fluctuations were related to the process of the dissociation into ions during the passage of an electric current through the electrodes, and were observed before and after the inclusion of a current into the system. A model of the effect of electrolysis during anaerobic digestion was developed, taking into account the influencing factors on the condition of the activated sludge.
  • Item
    Integration of Processes of Radionuclide-Contaminated Territories Decontamination in the Framework of their Ecological-Socio-Economic Rehabilitation
    (Polish Society of Ecological Engineering (PTIE); Lublin University of Technology, 2022) Черниш, Єлізавета Юріївна; Черныш, Елизавета Юрьевна; Chernysh, Yelyzaveta Yuriivna; Balintova, M.; Shtepa, V.; Скворцова, Поліна Олексіївна; Скворцова, Полина Алексеевна; Skvortsova, Polina Oleksiivna; Скиданенко, Максим Сергійович; Скиданенко, Максим Сергеевич; Skydanenko, Maksym Serhiiovych; Fukui, M.
    Large-scale disasters at nuclear power plants (NPPs) and their consequences are still the subject of discussion by the world scientific community, which makes mankind recognize the unsolved problem of radiation pollution. Accordingly, the search for new effective biocomposite materials with high sorption capacity to eliminate harmful effects associated with radiation contamination of large territories is an urgent task on a global scale. This paper is devoted to the study of the decontamination processes of the areas contaminated with radionuclides, the search for new mechanisms of fixation of radionuclides and heavy metals in the soil using the matrix material of different origin. In order to intensify the process of radionuclide fixation in the soil-plant system, the method consisting of introducing into the soil the organic-mineral biocomposite based on sewage sludge and phosphogypsum after anaerobic fermentation was proposed. It is necessary to further study the processes of sorption and radionuclides solubilization due to complexation with organic agents present in matrix materials of different nature. The mechanisms of radionuclide and heavy metal fixation using matrix material of different origin were analyzed, and a general model was formed. The direction of integration of radionuclide-contaminated soil decontamination technologies into the process of ecological, social, and economic development of the territories under rehabilitation after the accidents at the Chernobyl NPP and Fukushima-1 NPP is proposed.
  • Item
    Rationale for the Combined Use of Biological Processes and AOPs in Wastewater Treatment Tasks
    (MDPI, 2021) Shtepa, V.; Balintova, M.; Черниш, Єлізавета Юріївна; Черныш, Елизавета Юрьевна; Chernysh, Yelyzaveta Yuriivna; Чубур, Вікторія Сергіївна; Чубур, Виктория Сергеевна; Chubur, Viktoriia Serhiivna; Demcak, S.; Gautier, M.
    This paper aims to form a unified concept of the integrated use of different wastewater treatment methods to form a resistant biological treatment stage of technological systems under the influence of such toxic factors as antibiotics and surfactants. The processes of mechanical treatment, ozonation, UV irradiation, and electrolytic anodic oxidation were implemented in an electrotechnological wastewater treatment facility. Wastewater treatment quality was determined by the concentration of nitrogen compounds in aqueous solutions according to the method of Lurie. Biodiagnostics of the investigated activated sludge via surfactant action was carried out at polyethylene oxide concentrations of 10, 30, and 50 mg/dm3. As a result of experiments on wastewater treatment after aquaculture, an improvement in the reduction of pollutants only by the indicator “nitrate concentration” was determined: by 20% after anodic oxidation, and by 15% after photolysis. At almost all surfactant concentrations studied, the activated sludge was not completely recovered, which was expressed in a decrease in its quantity and in the inability to aggregate flakes of activated sludge. The diameter of the growth retardation of the standard disk with antibiotic (amoxiclav) by the accumulative culture of activated sludge was 17.3 ± 2 mm at a concentration of 4 mg/dm3 and 31.3 ± 3 mm at a concentration of 6 mg/dm3. In the process of studying the state of the activated sludge’s biocenosis under the influence of such toxicants, several regularities were revealed. The directions of using combined approaches of water treatment and wastewater treatment were defined. The structural model of treatment facilities using aerobic and anaerobic bioprocesses together with advanced oxidative technologies was substantiated.