Видання, зареєтровані у фондах бібліотеки
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/56
Browse
8 results
Search Results
Item Створення нових гранульованих матеріалів для ядерного палива та каталізаторів в активному гідродинамічному середовищі(Сумський державний університет, 2022) Склабінський, Всеволод Іванович; Sklabinskyi, Vsevolod Ivanovych; Скиданенко, Максим Сергійович; Skydanenko, Maksym Serhiiovych; Ляпощенко, Олександр Олександрович; Liaposhchenko, Oleksandr Oleksandrovych; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych; Острога, Руслан Олексійович; Ostroha, Ruslan Oleksiiovych; Юхименко, Микола Петрович; Yukhymenko, Mykola Petrovych; Юрченко, Олександр Юрійович; Yurchenko, Oleksandr Yuriiovych; Мандрика, О.О.; Москальчук, О.М.; Бондар, Дмитро Іванович; Bondar, Dmytro Ivanovych; Сергієнко, Андрій Романович; Serhiienko, Andrii Romanovych; Шматенко, В'ячеслав Анатолійович; Shmatenko, Viacheslav Anatoliiovych; Нічволодін, Костянтин Васильович; Nichvolodin, Kostiantyn VasylovychОб`єкт дослідження – процес гранулоутворення нових матеріалів для ядерного палива та каталізаторів з покращеними властивостями. Мета роботи – формування наукових засад забезпечення технологічних умов створення нових гранульованих речовин, оксидів металів, зокрема для ядерного палива та каталізаторів, на золь-гельній основі шляхом інтенсифікації гідродинамічних і тепломасообмінних процесів за рахунок накладання зовнішнього вібраційного впливу. Методи дослідження. Основні теоретичні та експериментальні залежності, що описують гідродинамічні та тепломасообмінні процеси при гранулоутворенні, визначаються диференціальними методами математичного аналізу та інтегрального обчислення із застосуванням CAS-систем, комплексному застосуванні засобів вимірювання, проведення структурних досліджень, застосування САЕ-технологій та теорії гратчастих структур у поєднанні з методами параметричної ідентифікації, нелінійного та квазілінійного регресійного аналізу, а також засобів штучного інтелекту, зокрема, штучних нейронних мереж та генетичних алгоритмів. Під час проведення експериментальних досліджень застосовано сучасні засоби вимірювання параметрів дисперсності гранул і контролю витрат індукційним способом, системи безконтактних струмовихрових датчиків механічних коливань та їх спектральний аналіз, методи масспектрометрійного та оптико-емісійного аналізу, електроакустичної та ЯМР-спектрометрії, а також використано системи перетворювачів з подальшим трансформуванням сигналу із застосуванням апаратно-програмних засобів побудови комплексних систем автоматики, їх компіляції та програмування. Обґрунтовано можливості інтенсифікації гідромеханічних та тепломасообмінних процесів отримання нових гранульованих речовин за рахунок накладання віброакустичних коливань. Описано загальну методику експериментальних досліджень і моделювань, стратегічне та тактичне планування експериментів з описом експериментальних і дослідних установок. Розвинуто теоретичні основи моделювання процесу віброгрануляції дисперсних матеріалів за золь-гель технологією, розроблено моделі руху краплин, осадження золю в гелі, нанесення шару покриття на модельні мікросфери. Розроблено математичні моделі впливу активних гідродинамічних і тепломасообмінних режимів, проведено числове моделювання процесу вібраційної грануляції в активному гідродинамічному середовищі гелю із застосуванням сучасних CAE-технологій та засобів штучного інтелекту. За результатами експериментальних досліджень надано рекомендації щодо режимно-технологічної та апаратурно-конструктивної оптимізації процесу гранулоутворення за золь-гельною технологією. Наведено рекомендації з вибору та обґрунтування параметрів, що впливають на характеристики отриманого продукту за золь-гельною технологією.Item Створення нових гранульованих матеріалів для ядерного палива та каталізаторів в активному гідродинамічному середовищі(Сумський державний університет, 2020) Склабінський, Всеволод Іванович; Склабинский, Всеволод Иванович; Sklabinskyi, Vsevolod Ivanovych; Скиданенко, Максим Сергійович; Скиданенко, Максим Сергеевич; Skydanenko, Maksym Serhiiovych; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Юхименко, Микола Петрович; Юхименко, Николай Петрович; Yukhymenko, Mykola Petrovych; Кононенко, Микола Петрович; Кононенко, Николай Петрович; Kononenko, Mykola Petrovych; Покотило, Володимир Миколайович; Покотило, Владимир Николаевич; Pokotylo, Volodymyr Mykolaiovych; Острога, Руслан Олексійович; Острога, Руслан Алексеевич; Ostroha, Ruslan Oleksiiovych; Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Шматенко, В'ячеслав Анатолійович; Шматенко, Вячеслав Анатольевич; Shmatenko, Viacheslav Anatoliiovych; Нічволодін, К.В.; Наталуха, А.Р.; Яковчук, В.В.; Хухрянський, Олег Миколайович; Хухрянский, Олег Николаевич; Khukhrianskyi, Oleh MykolaiovychОб`єкт дослідження – процес гранулоутворення нових матеріалів для ядерного палива та каталізаторів з покращеними властивостями. Мета роботи – формування наукових засад забезпечення технологічних умов створення нових гранульованих речовин, оксидів металів, зокрема для ядерного палива та каталізаторів, на золь-гельній основі шляхом інтенсифікації гідродинамічних і тепломасообмінних процесів за рахунок накладання зовнішнього вібраційного впливу.Item Гідродинамічні показники двофазних потоків у тепломасообмінному грануляційному та сепараційному обладнанні(Сумський державний університет, 2019) Склабінський, Всеволод Іванович; Склабинский, Всеволод Иванович; Sklabinskyi, Vsevolod Ivanovych; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych; Симак, Дмитро Михайлович; Симак, Дмитрий Михайлович; Symak, Dmytro Mykhailovych; Артюхов, Артем Євгенович; Артюхов, Артем Евгеньевич; Artiukhov, Artem Yevhenovych; Яхненко, Сергій Михайлович; Яхненко, Сергей Михайлович; Yakhnenko, Serhii Mykhailovych; Скиданенко, Максим Сергійович; Скиданенко, Максим Сергеевич; Skydanenko, Maksym Serhiiovych; Настенко, Ольга Вікторівна; Настенко, Ольга Викторовна; Nastenko, Olha Viktorivna; Старинський, Олександр Євгенович; Старинский, Александр Евгеньевич; Starynskyi, Oleksandr YevhenovychМета роботи – визначення гідродинамічних та масотеплообмінних характеристик, а також вплив конструктивних та і технологічних факторів на інтенсивність й ефективність процесів із двофазними потоками у тепломасообмінному грануляційному та сепараційному обладнанні. Розробка нових конструкцій обляднання і створення науково обґрунтованої методики їх розрахунку.Item Підвищення ефективності грануляторів і сушарок з активними гідродинамічними режимами для отримання, модифікації і капсулювання добрив(Сумський державний університет, 2018) Артюхов, Артем Євгенович; Артюхов, Артем Евгеньевич; Artiukhov, Artem Yevhenovych; Іванія, Андрій Вікторович; Ивания, Андрей Викторович; Ivaniia, Andrii Viktorovych; Артюхова, Надія Олександрівна; Артюхова, Надежда Александровна; Artiukhova, Nadiia Oleksandrivna; Острога, Руслан Олексійович; Острога, Руслан Алексеевич; Ostroha, Ruslan OleksiiovychДослідження впливу гідро- та термодинамічних показників здійснення процесу гранулювання (у тому числі капсулювання і модифікації) на якість гранульованої продукції, розробка науково обґрунтованої методики розрахунку грануляційних та сушильних пристроїв з активними гідродинамічними режимами. Методи дослідження. В основу фізичного моделювання покладено методи теорії подібності. Експериментальні дослідження проведено з метою перевірки адекватності запропонованої математичної моделі. Адекватність отриманих розрахункових залежностей обумовлена застосуванням математичних моделей, що базуються на загальних положеннях гідрогазодинаміки та кінетики зневоднення, а також зіставленням розрахункових та експериментальних даних.Item Підвищення ефективності грануляторів і сушарок з активними гідродинамічними режимами для отримання, модифікації і капсулювання добрив(Сумський державний університет, 2017) Артюхов, Артем Євгенович; Артюхов, Артем Евгеньевич; Artiukhov, Artem Yevhenovych; Іванія, Андрій Вікторович; Ивания, Андрей Викторович; Ivaniia, Andrii Viktorovych; Артюхова, Надія Олександрівна; Артюхова, Надежда Александровна; Artiukhova, Nadiia Oleksandrivna; Острога, Руслан Олексійович; Острога, Руслан Алексеевич; Ostroha, Ruslan OleksiiovychОб`єкт дослідження – процеси отримання та термообробки гранульованих модифікованих та капсульованих добрив. Мета роботи – дослідження впливу гідро- та термодинамічних показників здійснення процесу гранулювання (у тому числі капсулювання і модифікації) на якість гранульованої продукції, розробка науково обґрунтованої методики розрахунку грануляційних та сушильних пристроїв з активними гідродинамічними режимамиItem Спосіб отримання гранульованого носія, що містить іммобілізовані мікроорганізми(Міністерство економічного розвитку і торгівлі України, 2017) Черниш, Єлізавета Юріївна; Черныш, Елизавета Юрьевна; Chernysh, Yelyzaveta Yuriivna; Пляцук, Леонід Дмитрович; Пляцук, Леонид Дмитриевич; Pliatsuk, Leonid Dmytrovych1. Спосіб отримання гранульованого носія, що містить іммобілізовані мікроорганізми. 2. Винахід відноситься до біотехнології та екології, зокрема до способів отримання іммобілізованих мікроорганізмів в гранулах придатних для використання в системах біологічного очищення різних середовищ; утилізація фосфогіпсових відходів хімічної промисловості та золи виносу ТЕС. 3. Змішування і гомогенізація мікроорганізмів у вигляді суспензії з гелеутворюючим реагентом, в якості якого використовують 3-5 %-ний розчин альгінату натрію, при цьому як добавку до гелеутворюючого реагенту використовують фосфогіпс з утворенням напівпродукту. Гранулювання напівпродукту з мінеральним порошком, який виготовлений на основі золи виносу ТЕС (теплових електростанцій) і має підвищену водостійкість (гідрофобність), здійснюють в обертовому тарільчастому грануляторі, при швидкості обертання тарілки 70-80 об/хв. з отриманням гранул із модифікованою поверхнею діаметром 4-5 мм. При цьому концентрація в суспензії мікроорганізмів забезпечується на рівні 108-109 КУО/г, а фосфогіпс попередньо промивають водою та висушують при 60 °C для збільшення частки дигідрату сульфату кальцію в ньому. Гранулювання здійснюють протягом 10-30 хвилин при температурі +25 °С, після чого гранули сушать до 6 годин при температурі +(25-30 °C). Як суспензію мікроорганізмів використовують ацидофільну асоціацію видів тіобацил, а саме Thiobacillus thiooxidans та Thiobacillus ferrooxidans. Вихідне співвідношення компонентів складає в мас.ч.: суспензія мікроорганізмів необхідної еколого-трофічної групи 10-15; 3-5 % розчин альгінату натрію 3-5; фосфогіпс 11-20; порошок, що виготовлений на основі золи виносу ТЕС 7-10. 3. Очищення природного середовища від різних видів забруднень; зниження антропогенного навантаження від об'єктів складування фосфогіпсових відходів та золовідвалів ТЕС.Item Пристрій для гранулювання у вихровому зваженому шарі(Державна служба інтелектуальної власності України, 2016) Артюхов, Артем Євгенович; Артюхов, Артем Евгеньевич; Artiukhov, Artem Yevhenovych; Кремнєв, О. В.Пристрій для гранулювання у зваженому шарі містить основний вертикальний корпус у вигляді конуса з еліптичною кришкою і днищем, всередині якого концентрично встановлений додатковий конус, з утворенням між їхніми бічними поверхнями міжкорпусної кільцевої порожнини, розташований на одній осі з додатковим конусом вихровий газорозподільний вузол, нижня частина якого з'єднана з кільцевим уловлювачем гранул крупної фракції матеріалу, виконаним у вигляді циліндра з нахильним днищем і розвантажувальним жолобом для відводу готового продукту, розміщений всередині кільцевого уловлювача гранул вертикальний направляючий патрубок для подачі дрібної фракції матеріалу,верхній кінець якого розташований у робочому об'ємі додаткового конуса, а нижній кінець у днищі основного вертикального корпуса, патрубки для подачі потоку теплоносія, основного тангенціально з'єднаного з кільцевим уловлювачем та для вторинного контакту з гранулами, що розташований у нижній частині основного вертикального корпусу, патрубок для відводу теплоносія з пристрою, виконаний у кришці основного вертикального корпусу, патрубок для подачі рідкого матеріалу з вузлом розпилення, який розташований на одній осі з додатковим конусом та виконаний у вигляді комбінованої коробчасто-сферичної порожнини з перфорованою нижньою частиною (днищем), патрубок для подачі газового потоку, розташований співвісно з вертикальним направляючим патрубком. Крім цього, вихровий газорозподільний вузол виконаний у вигляді полотна з лопатками, що розташовані у конусній вставці, яка встановлена у верхній частині вихрового газорозподільного вузла, а під полотном у нижній частині вихрового газорозподільного вузла встановлена вставка-завихрювач.Item Гідродинамічні чинники грануляційних пристроїв із зниженою висотою польоту гранул(Сумський державний університет, 2009) Артюхов, Артем Євгенович; Артюхов, Артем Евгеньевич; Artiukhov, Artem YevhenovychДисертація присвячена питанням теоретичних та експериментальних досліджень гідродинамічних показників однофазного та двофазного потоків у робочому просторі малогабаритних апаратів вихрового типу з інтенсивною гідродинамікою та змінною площею перетину робочого простору. У даний час вітчизняні підприємства, що спеціалізуються на виробництві гранульованих пористих продуктів з розчинів і розплавів, використовують для цього грануляційні вежі. Цей тип обладнання характеризується значними капітальними затратами на виготовлення, технічне обслуговування і ремонт. Будівництво принципово нових малотоннажних підприємств, заснованих на виробництві гранульованих продуктів за допомогою грануляторів псевдозрідженого шару, - один із способів зниження витрат на виробництво гранульованих пористих продуктів і збільшення їх якісних характеристик. На базі створеної фізичної та математичної моделей розроблено методику розрахунку гідродинаміки робочого простору вихрових апаратів, визначено гідродинамічні характеристики потоків та оцінено вплив початкових, технологічних та геометричних умов на габарити грануляційних пристроїв. Створено алгоритм та методику інженерного розрахунку апаратів вихрового типу. Запропоновано та захищено патентами України новий спосіб отримання гранульованого продукту та нові малогабаритні високоефективні пристрої для здійснення гранулювання. Проведено дослідно-промислове впровадження апаратів вихрового типу з порівняльним аналізом товарної продукції, результати якого довели високу ефективність розробленого обладнання. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/621