Факультет електроніки та інформаційних технологій (ЕлІТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20
Browse
Search Results
Item Mathematical Model for Adaptive Technology in E-learning Systems(MECS Press, 2022) Барченко, Наталія Леонідівна; Барченко, Наталья Леонидовна; Barchenko, Nataliia Leonidivna; Толбатов, Володимир Аронович; Толбатов, Владимир Аронович; Tolbatov, Volodymyr Aronovych; Лаврик, Тетяна Володимирівна; Лаврик, Татьяна Владимировна; Lavryk, Tetiana Volodymyrivna; Ободяк, Віктор Корнелійович; Ободяк, Виктор Корнелиевич; Obodiak, Viktor Korneliiovych; Шелехов, Ігор Володимирович; Шелехов, Игорь Владимирович; Shelekhov, Ihor Volodymyrovych; Толбатов, Андрій Володимирович; Толбатов, Андрей Владимирович; Tolbatov, Andrii Volodymyrovych; Gnatyuk, S.; Tolbatova, O.The emergence of a large number of e-learning platforms and courses does not solve the problem of improving the quality of education. This is primarily due to insufficient implementation or lack of mechanisms for adaptation to the individual parameters of the student. The level of adaptation in modern e-learning systems to the individual characteristics of the student makes the organization of human-computer interaction relevant. As the solution of the problem, a mathematical model of the organization of human-computer interaction was proposed in this work. It is based on the principle of two-level adaptation that determines the choice of the most comfortable module for studying at the first level. The formation of an individual learning path is performed at the second level. The problem of choosing an e-module is solved using a fuzzy logic. The problem of forming a learning path is reduced to the problem of linear programming. The input data are the characteristics of the quality of student activity in the education system. Based on the proposed model the computer technology to support student activities in modular e-learning systems is developed. This technology allows increasing the level of student’s cognitive comfort and optimizing the learning time. The most important benefit of the proposed approach is to increase the average score and increase student satisfaction with learning.Item Information-extreme machine training system of functional diagnosis system with hierarchical data structure(National University "Zaporizhzhia Polytechnic", 2022) Shelehov, I.V.; Барченко, Наталія Леонідівна; Барченко, Наталья Леонидовна; Barchenko, Nataliia Leonidivna; Прилепа, Дмитро Вікторович; Прилепа, Дмитрий Викторович; Prylepa, Dmytro Viktorovych; Бібик, Мирослав Віталійович; Бибик, Мирослав Витальевич; Bibyk, Myroslav VitaliiovychContext. The problem of information-extreme machine learning of the functional diagnosis system is considered by the example of recognizing the technical state of a laser printer by typical defects of the printed material. The object of the research is the process of hierarchical machine learning of the functional diagnosis system of an electromechanical device. Objective. The main objective is to improve the functional efficiency of machine learning during functional diagnostics system retraining using automatically forming a new hierarchical data structure for an expanded alphabet of recognition classes. Method. A method of information-extreme hierarchical machine learning of the system of functional diagnosis of a laser printer based on typical defects of the printed material is proposed. The method was developed with functional approach of modeling the cognitive processes of natural intelligence, which makes it possible to give the diagnostic system the properties of adaptability under arbitrary initial conditions for the formation of images of printing defects and flexibility during retraining of the system due to an increase in the power of the alphabet of recognition classes. The method is based on the principle of maximizing the amount of information in the process of machine learning. The process of information-extreme machine learning is considered as an iterative procedure for optimizing the parameters of the functioning of the functional diagnostics system according to the information criterion. As a criterion for optimizing machine learning parameters, a modified Kullback’s information measure is considered, which is a functional of the exact characteristics of classification solutions. According to the proposed categorical functional model, an information-extreme machine learning algorithm has been developed based on a hierarchical data structure in the form of a binary decomposition tree. The use of such a data structure makes it possible to split a large number of recognition classes into pairs of nearest neighbors, for which the optimization of machine learning parameters is carried out according to a linear algorithm of the required depth. Results. Information, algorithmic software for the system of functional diagnostics of a laser printer based on images of typical defects in printed material has been developed. The influence of machine learning parameters on the functional efficiency of the system of functional diagnostics of a laser printer based on images of defects in printed material has been investigated. Conclusions. The results of physical modeling have confirmed the efficiency of the proposed method of information-extreme machine learning of the system of functional diagnosis of a laser printer based on typical defects in printed material and can be recommended for practical use. The prospect of increasing the functional efficiency of information-extremal learning of the functional diagnostics system is to increase the depth of machine learning by optimizing additional parameters of the system’s functions, including the parameters of the formation of the input training matrix.