Факультет електроніки та інформаційних технологій (ЕлІТ)

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Інформаційно-екстремальне машинне навчання системи керування протезом кінцівки руки для розпізнавання електроміографічних біосигналів за розрідженою навчальною матрицею
    (Кременчуцький національний університет, 2023) П'ятаченко, Владислав Юрійович; Пятаченко, Владислав Юрьевич; Piatachenko, Vladyslav Yuriiovych; Довбиш, Анатолій Степанович; Довбыш, Анатолий Степанович; Dovbysh, Anatolii Stepanovych
    Розглядається задача машинного навчання системи керування протезом кисті руки з неінвазивною системою зчитування біосигналів. Задача розв’язується у рамках інформаційно-екстремальної інтелектуальної технології аналізу даних, яка базується на максимізації інформаційної спроможності системи у процесі її машинного навчання. Розроблений інформаційно-екстремальний метод машинного навчання системи керування протезом кінцівки руки на відміну від нейроподібних структур розроблено у рамках функціонального підходу до моделювання когнітивних процесів природного інтелекту при формуванні та прийнятті класифікаційних рішень. У результаті запропонований метод набуває властивості адаптивності до довільних умов формування навчальної матриці та гнучкості при перенавчанні системи через розширення алфавіту класів розпізнавання. Крім того, вирішальні правила, побудовані за отриманими у процесі інформаційно-екстремального машинного навчання оптимальними в інформаційному розумінні геометричними параметрами контейнерів класів розпізнавання, характеризуються високою оперативністю, що є важливим показником функціональної ефективності когнітивно керованого протезу. Відмінність розробленого методу від відомих методів інформаційно-екстремального машинного навчання полягає у застосуванні розрідженої навчальної матриці, що дозволяє суттєво зменшити ступінь перетину класів розпізнавання у просторі ознак. За результатами комп’ютерного моделювання доведено, що використання розрідженої навчальної матриці, отриманої за результатами оптимізації рівня квантування електроміографічних біосигналів для алфавіту трьох класів розпізнавання, дозволяє підвищити повну ймовірність правильного прийняття класифікаційних рішень майже у п’ять разів порівняно з нерозрідженою навчальною матрицею, що гарантує прийняття у робочому режимі високодостовірних класифікаційних рішень.