Факультет електроніки та інформаційних технологій (ЕлІТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20
Browse
2 results
Search Results
Item Інформаційно-аналітична система оцінювання відповідності сучасним вимогам навчального контенту спеціальності кібербезпека(Національний аерокосмічний університет "Харківський авіаційний інститут", 2021) Довбиш, Анатолій Степанович; Dovbysh, Anatolii Stepanovych; Шелехов, Ігор Володимирович; Shelekhov, Ihor Volodymyrovych; Хібовська, Юлія Олексіївна; Khibovska, Yuliia Oleksiivna; Матяш, О.В.Розв’язана актуальна задача підвищення функціональної ефективності машинного навчання інформаційно-аналітичної системи (ІАС) оцінки відповідності сучасним вимогам контенту навчальних дисциплін бакалаврського рівня спеціальності «Кібербезпека» Розроблено метод інформаційно-екстремального машинного навчання ІАС з метою адаптації навчального контенту випускової кафедри до вимог ринку праці, що дозволяє при функціонуванні системи в режимі моніторингу оперативно корегувати контент з навчальних дисципліни випускової кафедри. Ідея методу полягає у максимізації інформаційної спроможності ІАС в процесі машинного навчання, що дозволяє в режимі моніторингу отримати максимальну повну ймовірність прийняття правильних класифікаційних рішень. За результатами інформаційно-екстремального машинного навчання в рамках геометричного підходу побудовано вирішальні правила, практично інваріантні до багато вимірності простору ознак розпізнавання. Як критерій оптимізації параметрів машинного навчання використовується модифікація інформаційної міри Кульбака, яка є функціоналом точнісних характеристик класифікаційних рішень. Як параметри оптимізації розглядалися геометричні параметри гіперсферичних контейнерів класів розпізнавання, які в процесі машинного навчання відновлювалися в радіальному базисі бінарного простору ознак Хеммінга. При цьому вхідна навчальна матриця трансформувалася в робочу бінарну навчальну матрицю, яка змінювалася в процесі машинного навчання шляхом допустимих перетворень з метою адаптації вхідного математичного опису системи до максимальної достовірності класифікаційних рішень. Запропоновано категорійну модель функціонування ІАС, на основі якої розроблено алгоритм інформаційно-екстремального машинного навчанням системи з автоматичним визначенням базового класу розпізнавання. За результатами опитування фахівців з кібербезпеки сформовано вхідну структуровану навчальну матрицю, а за результатами фізичного моделювання підтверджено працездатність запропонованого методу інформаційно-екстремального машинного навчання ІАС.Item Інформаційно-екстремальне ієрархічне навчання системи керування протезом кісті руки з неінвазивною системою зчитування біосигналів(Національний університет "Запорізька політехніка", 2020) Довбиш, Анатолій Степанович; Dovbysh, Anatolii Stepanovych; П'ятаченко, Владислав Юрійович; Piatachenko, Vladyslav Yuriiovych; Симоновський, Юлій Віталійович; Symonovskyi, Yulii Vitaliiovych; Шкуропат, О.А.Актуальність. Розв’язана актуальна задача інформаційного синтезу здатної навчатися системи керування протезом кісті руки з неінвазивною системою зчитування біосигналів. Мета роботи – підвищення функціональної ефективності системи керування протезом кісті руки з неінвазивною системою зчитування біосигналів на основі машинного навчання, що дозволяє при функціонуванні системи в робочому режимі розпізнавати з високою достовірністю і оперативністю когнітивні команди користувача протезу. Метод. У рамках інформаційно-екстремальної інтелектуальної технології (ІЕІ-технології) аналізу даних, яка базується на максимізації інформаційної спроможності системи розпізнавання в процесі машинного навчання, запропоновано метод інформаційного синтезу інтелектуальної системи керування протезом кісті руки з неінвазивною системою зчитування біосигналів. На відміну від існуючих методів інтелектуального аналізу даних метод інформаційно-екстремального машинного навчання розроблено в рамках функціонального підходу до моделювання когнітивних процесів, притаманних людині при формування та прийняття класифікаційних рішень. Такий підхід дозволяє наділити систему керування протезом властивостями адаптивності до довільних початкових умов формування когнітивних команд і перенавчання при розширенні словника ознак та алфавіту класів розпізнавання. Крім того, вирішальні правила, побудовані за отриманими в процесі машинного навчання геометричними параметрами гіперсферичних контейнерів класів розпізнавання є практично інваріантними до багато вимірності простору ознак розпізнавання. На основі запропонованої категорійної моделі розроблено алгоритм машинного навчання з оптимізацією ієрархічної структури даних. При цьому досліджено вплив на функціональну ефективність машинного навчання структур даних, побудованих у вигляді дихотомічного і декурсивного дерев. Як критерій оптимізації параметрів машинного навчання використовується модифікація інформаційної міри Кульбака, яка є функціоналом точнісних характеристик рішень, що приймаються. Результати. Побудовані в процесі ієрархічного інформаційно-екстремального машинного навчання вирішальні правила дозволяють розпізнавати в реальному темпі часу когнітивні команди з достатньо високою повною ймовірністю прийняття правильних класифікаційних рішень. За результатами фізичного моделювання доведено, що при використанні ієрархічної структури даних у вигляді декурсивного дерева функціональна ефективність машинного навчання збільшується у порівнянні із структурою даних у вигляді дихотомічного бінарного дерева. Висновки. Експериментально підтверджено достатньо високу функціональну ефективність запропонованого методу інформаційно-екстремального машинного навчання системи керування протезом кісті руки з неінвазивною системою зчитування біосигналів. Отримані наукові результати відкривають новий напрям створення інтелектуальних протезів руки з неінвазивною системою зчитування біосигналів на основі машинного навчання та розпізнавання образів.