Факультет електроніки та інформаційних технологій (ЕлІТ)

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Модель і метод навчання класифікатора контекстів спостереження на зображеннях відеоінспекції стічних труб
    (Національний аерокосмічний університет ім. М.Є. Жуковського "Харківський авіаційний інститут", 2020) Москаленко, В`ячеслав Васильович; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Zaretskyi, Mykola Oleksandrovych; Ковальський, Ярослав Юрійович; Kovalskyi, Yaroslav Yuriiovych; Мартиненко, Сергій Сергійович; Martynenko, Serhii Serhiiovych
    Відеоінспекція часто використовується для діагностики дефектів стічних труб. Для коректного кодування знайдених дефектів згідно існуючих стандартів необхідно враховувати багато контекстної інформації щодо орієнтації та розташування камери в трубі. Запропоновано модель класифікації контекстів спостереження на кадрах відеоінспекції стічних труб та п’ятиетапний метод машинного навчання. Основна ідея запропонованого підходу полягає у поєднанні методів глибокого машинного навчання з принципами максимізації інформації та кодування самокоректуючими кодами Хеммінга. Запропонована модель складається з глибокої згорткової нейронної мережі із сигмоїдним та округлючим вихідними шарами та інформаційно-екстремальних вирішувальних правил. Перші етапи методу полягають в аугментації даних та навчанні екстрактора ознак в складі сіамської моделі з softmax триплетною функцією втрат. Наступні етапи пов’язані з обчислення двійкового коду для кожного класу розпізнавання, що використовується як мітка під час навчання з бінарною кросентропійною функцією втрат з метою підвищення компактності розподілу спостережень кожного класу в двійковому просторі Хемінга. На останньому етапі методу навчання передбачається для кожного класу здійснювати оптимізацію параметрів радіально-базисних вирішувальних правил в просторі Хеммінга на основі інформаційного критерію. Інформаційний критерій, виражений як логарифмічна функція точністних характеристик вирішувальних правил, забезпечує максимальну узагальнюючу здатність та достовірність моделі за найскладніших у статистичному розумінні умов. Перевірка ефективності даного підходу здійснювалась на даних, наданих компаніями Ace Pipe Cleaning (Канзас Сіті, США) та MPWiK (Вроцлав, Польша) шляхом порівняння результатів навчання за запропонованою та традиційною моделями та схемами навчання. Отримана модель класифікатора кадрів зображення забезпечує прийнятну для практичного використання точність класифікації на тестовій вибірці, що становить 96,8 % і перевищує результат традиційної схеми навчання з softmaх вихідним шаром на 6,8 %.
  • Item
    Багатошарова модель та метод навчання для детектування шкідливого трафіку на основі ансамблю дерев рішень
    (Національний аерокосмічний університет ім. М.Є. Жуковського "Харківський авіаційний інститут", 2020) Москаленко, В`ячеслав Васильович; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Zaretskyi, Mykola Oleksandrovych; Москаленко, Альона Сергіївна; Moskalenko, Alona Serhiivna; Кудрявцев, Антон Михайлович; Kudriavtsev, Anton Mykhailovych; Семашко, Віктор Анатолійович; Semashko, Viktor Anatoliiovych
    Запропоновано модель і метод навчання багатошарового екстрактора ознак та вирішувальних правил для детектора шкідливого трафіку. Модель екстрактора ознак основана на згортковій розріджено кодуючій мережі, розріджений кодер якої апроксимується моделлю регресійного випадкового лісу згідно принципів дистиляції знань. При цьому розроблено алгоритм зростаючого розріджено кодуючого нейронного газу для навчання екстрактора ознак без вчителя з автоматичним визначення необхідної кількості ознак на кожному шарі. На етапі навчання екстрактора ознак для реалізації розрідженого кодування використано жадібний L0-регуляризований метод ортогонального узгодженого переслідування (Orthogonal Matching Pursuit), а під час дистиляції знань додатково використовувався L1- регуляризований метод найменших кутів (Least angle regression algorithm). Завдяки ефекту редукції причини отримані ознаки є некорельованими, а сформований ознаковий опис є стійким до завад та змагальних (Adveserial) атак. Запропонований екстрактор ознак навчається без вчителя для розділення пояснюючих факторів і дозволяє з максимальною ефективністю використати нерозмічені навчальні дані, обсяг яких, як правило, досить великий. Як модель вирішувальних правил запропоновано використовувати двійковий кодер спостережень на основі ансамблю дерев рішень та інформаційноекстремальні роздільні замкнені гіперповерхні (контейнери) класів, що відновлюються в радіальному базисі двійкового простору Хеммінга. Додавання кодуючих дерев відбувається за принципом бустінгу, а радіус контейнерів класів оптимізується шляхом прямого перебору. Інформаційно-екстремальний класифікатор характеризується низькою обчислювальною складністю та високою узагальнюючою здатністю для малих наборів розмічених навчальних даних. Результати верифікації навченої моделі на відкритих тестових наборах даних CTU підтверджують придатність запропонованих алгоритмів для практичного застосування, оскільки точність розпізнавання шкідливого трафіку становить 96,1 %.
  • Item
    Модель та метод навчання для класифікаційного аналізу рівня води в стічних трубах за даними відео інспекції
    (Національний аерокосмічний університет "Харківський авіаційний інститут", 2021) Москаленко, В`ячеслав Васильович; Москаленко, Вячеслав Васильевич; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Зарецкий, Николай Александрович; Zaretskyi, Mykola Oleksandrovych; Коробов, Артем Геннадійович; Коробов, Артем Геннадьевич; Korobov, Artem Hennadiiovych; Ковальський, Ярослав Юрійович; Ковальский, Ярослав Юрьевич; Kovalskyi, Yaroslav Yuriiovych; Шаєхов, Артур Фанісович; Шаехов, Артур Фанисович; Shaiekhov, Artur Fanisovych; Семашко, Віктор Анатолійович; Семашко, Виктор Анатольевич; Semashko, Viktor Anatoliiovych; Панич, Андрій Олександрович; Паныч, Андрей Александрович; Panych, Andrii Oleksandrovych
    Розроблено та досліджено модель та метод навчання для класифікаційного аналізу рівня води на кадрах відео інспекції стічних труб. Об’єктом дослідження є процес розпізнавання рівня води з урахуванням просторово-часового контексту під час інспекції стічних труб. Предметом дослідження є модель та метод машинного навчання для класифікаційного аналізу рівня води на відео-послідовностях інспекції труб за умов обмеженого та незбалансованого набору навчальних даних. Запропоновано чотирьохетапний алгоритм навчання класифікатора. На першому етапі навчання відбувається навчання з нормалізованою триплетною функцією втрат та регуляризуючою складовою для штрафування за помилку округлення вихідного сигналу мережі до двійкового коду. Наступний етап потрібний для визначення двійкового коду класу відповідно до принципів завадозахищеного кодування з самовиправленням помилок, але з урахуванням внутрікласових і міжкласових відношень. Обчислений еталонний вектор кожного класу використовується як цільова розмітка зразка для подальшого навчання з використанням об’єднаної крос-ентропійної функції втрат. Останній етап машинного навчання пов’язаний з оптимізацією параметрів вирішувальних правил за інформаційним критерієм для врахування меж відхилення двійкового подання спостережень кожного класу від відповідних еталонних векторів. Як модель класифікатора розглядається поєднання 2D згорткового екстрактора ознак кадру з темпоральною мережею для аналізу міжкадрових залежностей. При цьому виконується порівняння різних варіантів темпоральної мережі. Розглядаються 1D регулярна згорткова мережа з дірявими згортками, 1D каузальна згорткова мережа з дірявими згортками, рекурентна LSTM-мережа, рекурентна GRU-мережа. Порівняння ефективності моделей відбувається за мікро-усередненою метрикою F1, що обчислюється на тестовій вибірці. Результати, отримані на наборі даних від компанії Ace Pipe Cleaning (Канзас Сіті, США), підтверджують придатність моделі і методу навчання до практичного використання, отримане значення F1-метрики дорівнює 0,88. При цьому результати навчання за запропонованим методом порівнювалися з результатами, отриманими традиційним методом. Було показано, що запропонований метод забезпечує збільшення значення мікро-усередненої метрики F1 на 9 %.