Факультет електроніки та інформаційних технологій (ЕлІТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20
Browse
Search Results
Item Advanced “Green” Prebiotic Composite of Bacterial Cellulose/Pullulan Based on Synthetic Biology-Powered Microbial Coculture Strategy(MDPI, 2022) Zhantlessova, S.; Savitskaya, I.; Kistaubayeva, A.; Ignatova, L.; Talipova, A.; Погребняк, Олександр Дмитрович; Погребняк, Александр Дмитриевич; Pohrebniak, Oleksandr Dmytrovych; Digel, I.Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.Item Microstructure, Mechanical and Tribological Properties of Advanced Layered WN/MeN (Me = Zr, Cr, Mo, Nb) Nanocomposite Coatings(MDPI, 2022) Смирнова, Катерина Василівна; Смирнова, Екатерина Васильевна; Smyrnova, Kateryna Vasylivna; Sahul, M.; Harsani, M.; Погребняк, Олександр Дмитрович; Погребняк, Александр Дмитриевич; Pohrebniak, Oleksandr Dmytrovych; Ivashchenko, V.; Beresnev, V.; Stolbovoy, V.; Caplovic, L.; Caplovicova, M.; Vanco, L.; Kusy, M.; Kassymbaev, A.; Satrapinskyy, L.; Flock, D.Due to the increased demands for drilling and cutting tools working at extreme machining conditions, protective coatings are extensively utilized to prolong the tool life and eliminate the need for lubricants. The present work reports on the effect of a second MeN (Me = Zr, Cr, Mo, Nb) layer in WN-based nanocomposite multilayers on microstructure, phase composition, and mechanical and tribological properties. The WN/MoN multilayers have not been studied yet, and cathodic-arc physical vapor deposition (CA-PVD) has been used to fabricate studied coating systems for the first time. Moreover, first-principles calculations were performed to gain more insight into the properties of deposited multilayers. Two types of coating microstructure with different kinds of lattices were observed: (i) face-centered cubic (fcc) on fcc-W2N (WN/CrN and WN/ZrN) and (ii) a combination of hexagonal and fcc on fcc-W2N (WN/MoN and WN/NbN). Among the four studied systems, the WN/NbN had superior properties: the lowest specific wear rate (1.7 × 10−6 mm3/Nm) and high hardness (36 GPa) and plasticity index H/E (0.93). Low surface roughness, high elastic strain to failure, Nb2O5 and WO3 tribofilms forming during sliding, ductile behavior of NbN, and nanocomposite structure contributed to high tribological performance. The results indicated the suitability of WN/NbN as a protective coating operating in challenging conditions.Item DC and AC Tests of Moisture Electrical Pressboard Impregnated with Mineral Oil or Synthetic Ester—Determination of Water Status in Power Transformer Insulation(MDPI, 2022) Zukowski, P.; Rogalski, P.; Kołtunowicz, T.N.; Kierczynski, K.; Zenker, M.; Погребняк, Олександр Дмитрович; Погребняк, Александр Дмитриевич; Pohrebniak, Oleksandr Dmytrovych; Kucera, M.In this study, the conductivity and permittivity of electrical pressboard—insulating liquid—water composites were investigated, and the electrical properties of the composites and water were analysed comparatively. Mineral oil and synthetic ester were used as insulating liquids. It was found that the presence of water caused an increase in the permeability of the composite in the frequency range below 100 Hz. The value of static permittivity determined by water in the content of 5 wt. % was approximately 15. To obtain this value caused by liquid water, its volume should be approximately five (oil) and four times (ester) higher than its actual content, respectively. The determined values of the activation energy of the DC conductivity of the composites were several times higher than the values of the activation energy of the conductivity of the liquid water. The experimental values of the dielectric relaxation times were many orders of magnitude higher than the dielectric relaxation times of water. This means that the experimental results obtained for the dielectric permittivity, the activation energy of conductivity and the dielectric relaxation times for moisture electrical pressboard impregnated by mineral oil or synthetic ester exclude the possibility of the presence of liquid water in the composites. It was found that the conductivity of the composites increased exponentially with increasing water content. Such dependencies are characteristic of hopping conductivity, caused by the quantum phenomenon of electron tunnelling between nanometre-sized potential wells. As the increase in conductivity is determined by the presence of water in the composites, therefore, the nanometre potential wells were single-water molecules or nanodrops.