Факультет електроніки та інформаційних технологій (ЕлІТ)
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20
Browse
3 results
Search Results
Item Model and Training Method of the Resilient Image Classifier Considering Faults, Concept Drift, and Adversarial Attacks(MDPI, 2022) Москаленко, В`ячеслав Васильович; Москаленко, Вячеслав Васильевич; Moskalenko, Viacheslav Vasylovych; Kharchenko, V.; Москаленко, Альона Сергіївна; Москаленко, Алена Сергеевна; Moskalenko, Alona Serhiivna; Петров, Сергій Олександрович; Петров, Сергей Александрович; Petrov, Serhii OleksandrovychModern trainable image recognition models are vulnerable to different types of perturbations; hence, the development of resilient intelligent algorithms for safety-critical applications remains a relevant concern to reduce the impact of perturbation on model performance. This paper proposes a model and training method for a resilient image classifier capable of efficiently functioning despite various faults, adversarial attacks, and concept drifts. The proposed model has a multi-section structure with a hierarchy of optimized class prototypes and hyperspherical class boundaries, which provides adaptive computation, perturbation absorption, and graceful degradation. The proposed training method entails the application of a complex loss function assembled from its constituent parts in a particular way depending on the result of perturbation detection and the presence of new labeled and unlabeled data. The training method implements principles of self-knowledge distillation, the compactness maximization of class distribution and the interclass gap, the compression of feature representations, and consistency regularization. Consistency regularization makes it possible to utilize both labeled and unlabeled data to obtain a robust model and implement continuous adaptation. Experiments are performed on the publicly available CIFAR-10 and CIFAR-100 datasets using model backbones based on modules ResBlocks from the ResNet50 architecture and Swin transformer blocks. It is experimentally proven that the proposed prototype-based classifier head is characterized by a higher level of robustness and adaptability in comparison with the dense layer-based classifier head. It is also shown that multi-section structure and self-knowledge distillation feature conserve resources when processing simple samples under normal conditions and increase computational costs to improve the reliability of decisions when exposed to perturbations.Item A model and training method for context classification in cctv sewer inspection video frames(National University "Zaporizhzhia Polytechnic", 2021) Москаленко, В`ячеслав Васильович; Москаленко, Вячеслав Васильевич; Moskalenko, Viacheslav Vasylovych; Зарецький, Микола Олександрович; Зарецкий, Николай Александрович; Zaretskyi, Mykola Oleksandrovych; Москаленко, Альона Сергіївна; Москаленко, Алена Сергеевна; Moskalenko, Alona Serhiivna; Панич, Андрій Олександрович; Паныч, Андрей Александрович; Panych, Andrii Oleksandrovych; Lysyuk, V.V.A model and training method for observational context classification in CCTV sewer inspection vide frames was developed and researched. The object of research is the process of detection of temporal-spatial context during CCTV sewer inspections. The subjects of the research are machine learning model and training method for classification analysis of CCTV video sequences under the limited and imbalanced training dataset constraint. Objective. Stated research goal is to develop an efficient context classifier model and training algorithm for CCTV sewer inspection video frames under the constraint of the limited and imbalanced labeled training set. Methods. The four-stage training algorithm of the classifier is proposed. The first stage involves training with soft triplet loss and regularisation component which penalises the network’s binary output code rounding error. The next stage is needed to determine the binary code for each class according to the principles of error-correcting output codes with accounting for intra- and interclass relationship. The resulting reference vector for each class is then used as a sample label for the future training with Joint Binary Cross Entropy Loss. The last machine learning stage is related to decision rule parameter optimization according to the information criteria to determine the boundaries of deviation of binary representation of observations for each class from the corresponding reference vector. A 2D convolutional frame feature extractor combined with the temporal network for inter-frame dependency analysis is considered. Variants with 1D Dilated Regular Convolutional Network, 1D Dilated Causal Convolutional Network, LSTM Network, GRU Network are considered. Model efficiency comparison is made on the basis of micro averaged F1 score calculated on the test dataset. Results. Results obtained on the dataset provided by Ace Pipe Cleaning, Inc confirm the suitability of the model and method for practical use, the resulting accuracy equals 92%. Comparison of the training outcome with the proposed method against the conventional methods indicated a 4% advantage in micro averaged F1 score. Further analysis of the confusion matrix had shown that the most significant increase in accuracy in comparison with the conventional methods is achieved for complex classes which combine both camera orientation and the sewer pipe construction features. Conclusions. The scientific novelty of the work lies in the new models and methods of classification analysis of the temporalspatial context when automating CCTV sewer inspections under imbalanced and limited training dataset conditions. Training results obtained with the proposed method were compared with the results obtained with the conventional method. The proposed method showed 4% advantage in micro averaged F1 score. It had been empirically proven that the use of the regular convolutional temporal network architecture is the most efficient in utilizing inter-frame dependencies. Resulting accuracy is suitable for practical use, as the additional error correction can be made by using the odometer data.Item Інформаційна технологія розпізнавання захворювань свиней за фотографією їх розтину(Сумський державний університет, 2019) Адеємі, О.С.Model and training algorithms of diseases detection system, preprocessed training and test set of postmortem photo with abnormal functional states of pig.