Факультет електроніки та інформаційних технологій (ЕлІТ)

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/20

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Порівняльний аналіз ефективності методів класифікації зображень
    (Cумський державний університет, 2024) Пустовий, Ю.М.
    Використовуючи датасет CIFAR-10, який містить 60,000 кольорових зображень, що відносяться до десяти класів, проведено порівняльний аналіз ефективності різних методів класифікації зображень. Класифікацію зображень проведено на основі наступних алгоритмів: згорткової нейронної мережі (CNN), методу опорних векторів (SVM), методу k-найближчих сусідів (k-NN), дерева рішень (Decision Trees). З'ясовано, що алгоритм, який побудовано на згортковій нейронній мережі (CNN) показує найвищу загальну точність, мінімізує помилкові спрацьовування. В роботі запропоновано рекомендації щодо вибору алгоритму для задачі класифікації виходячи з завдань конкретної задачі.
  • Item
    Вивчення існуючих моделей та нейромереж для розпізнавання образів з мінімізацією зусиль на додаткове тренування. Дослідження систем відеорозпізнавання, які не потребують навчання
    (Cумський державний університет, 2024) Івашина, А.В.
    У цій роботі досліджено методи розпізнавання та класифікації зображень за допомогою згорткових нейронних мереж (CNN) та навчання «з нуля» (ZSL). Розглянуто вибір активаційних функцій, оптимізаторів і метрик для оцінки моделей з метою досягнення найкращих результатів. Проведено підготовку та попередню обробку даних, машинне втілення CNN і ZSL, а також аналіз результатів експериментів. Показано ефективність обраних підходів для розпізнавання нових класів зображень без додаткового тренування. Виявлено переваги та недоліки кожного методу, що дозволяє окреслити напрямки для подальших досліджень і вдосконалення розглянутих моделей.
  • Item
    Побудова нейронної мережі для розпізнавання рукописних цифр
    (Cумський державний університет, 2023) Грибініченко, Я.А.
    У даній роботі було проведено аналіз та порівняння ефективності різних моделей нейронних мереж у задачі класифікації рукописних цифр з використанням бази даних MNIST. Особлива увага була зосереджена на двох архітектурах нейромереж: багатошаровому перцептроні та згортковій нейромережі.Під час тренування обох нейромереж на тренувальному наборі даних було оцінено їхню точність на тестовому наборі. Виявлено, що згорткова нейромережа досягає середньої точності розпізнавання значення швидше, в порівнянні з багатошаровим перцептроном. Запропоновано використовувати згорткові нейромережі для розпізнавання рукописних цифр, оскільки вони здатні виявляти ієрархічні структури та просторові залежності в даних, що сприяє покращенню точності класифікації. Такий підхід може бути корисним для широкого спектру завдань, пов'язаних з розпізнаванням образів та класифікацією зображень.