Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Article

Date of Defense

Scientific Director

Speciality

Date of Presentation

Abstract

We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.
We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.
We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal fluctuations.

Keywords

Brownian rotation, rotational diffusion, Fokker-Planck equation, effective Langevin equation

Citation

Rotational properties of ferromagnetic nanoparticles driven by a precessing magnetic field in a viscous fluid / T.V. Lyutyy, S.I. Denisov, V.V. Reva, Yu.S. Bystrik // Physical Review E 92, 042312 (2015).

Endorsement

Review

Supplemented By

Referenced By