Feature learning for information-extreme classifier
dc.contributor.author | Москаленко, В`ячеслав Васильович | |
dc.contributor.author | Москаленко, Вячеслав Васильевич | |
dc.contributor.author | Moskalenko, Viacheslav Vasylovych | |
dc.contributor.author | Moskalenko, А. | |
dc.contributor.author | Korobov, A. | |
dc.date.accessioned | 2017-06-22T07:43:46Z | |
dc.date.available | 2017-06-22T07:43:46Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm. | ru_RU |
dc.identifier.citation | Korobov, A. Feature learning for information-extreme classifier [Текст] / A. Korobov, A. Moskalenko, V. Moskalenko // Advanced Information Systems and Technologies : proceedings of the V international scientific conference, Sumy, May 17-19 2017/ Edited by S.І. Protsenko, V.V. Shendryk. - Sumy : Sumy State University, 2017. - P. 92-94. | ru_RU |
dc.identifier.uri | http://essuir.sumdu.edu.ua/handle/123456789/55740 | |
dc.language.iso | en | ru_RU |
dc.publisher | Sumy State University | ru_RU |
dc.rights.uri | cne | en_US |
dc.subject | coarse coding | ru_RU |
dc.subject | Fast Retina Keypoint | ru_RU |
dc.subject | feature extraction | ru_RU |
dc.subject | machine learning | ru_RU |
dc.subject | classifier | ru_RU |
dc.subject | information criterion | ru_RU |
dc.subject | машинное обучение | |
dc.subject | классификатор | |
dc.subject | информационный критерий | |
dc.subject | машинне навчання | |
dc.subject | класифікатор | |
dc.subject | информаційний критерій | |
dc.title | Feature learning for information-extreme classifier | ru_RU |
dc.type | Theses | ru_RU |