Feature learning for information-extreme classifier

dc.contributor.authorМоскаленко, В`ячеслав Васильович
dc.contributor.authorМоскаленко, Вячеслав Васильевич
dc.contributor.authorMoskalenko, Viacheslav Vasylovych
dc.contributor.authorMoskalenko, А.
dc.contributor.authorKorobov, A.
dc.date.accessioned2017-06-22T07:43:46Z
dc.date.available2017-06-22T07:43:46Z
dc.date.issued2017
dc.description.abstractThe feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm.ru_RU
dc.identifier.citationKorobov, A. Feature learning for information-extreme classifier [Текст] / A. Korobov, A. Moskalenko, V. Moskalenko // Advanced Information Systems and Technologies : proceedings of the V international scientific conference, Sumy, May 17-19 2017/ Edited by S.І. Protsenko, V.V. Shendryk. - Sumy : Sumy State University, 2017. - P. 92-94.ru_RU
dc.identifier.urihttp://essuir.sumdu.edu.ua/handle/123456789/55740
dc.language.isoenru_RU
dc.publisherSumy State Universityru_RU
dc.rights.uricneen_US
dc.subjectcoarse codingru_RU
dc.subjectFast Retina Keypointru_RU
dc.subjectfeature extractionru_RU
dc.subjectmachine learningru_RU
dc.subjectclassifierru_RU
dc.subjectinformation criterionru_RU
dc.subjectмашинное обучение
dc.subjectклассификатор
dc.subjectинформационный критерий
dc.subjectмашинне навчання
dc.subjectкласифікатор
dc.subjectинформаційний критерій
dc.titleFeature learning for information-extreme classifierru_RU
dc.typeThesesru_RU

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Korobov_Fast.pdf
Size:
837.73 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.79 KB
Format:
Item-specific license agreed upon to submission
Description: