Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Article
Date of Defense
Scientific Director
Speciality
Date of Presentation
Abstract
In this study, we demonstrate the feasibility of Bi-doped tetrahedrite Cu12Sb4−xBixS13
(x = 0.02–0.20) synthesis in an industrial eccentric vibratory mill using Cu, Sb, Bi and S elemental
precursors. High-energy milling was followed by spark plasma sintering. In all the samples, the
prevailing content of tetrahedrite Cu12Sb4S13 (71–87%) and famatinite Cu3SbS4
(13–21%), together with small amounts of skinnerite Cu3SbS3, have been detected. The occurrence of the individual Cu-Sb-S phases and oxidation states of bismuth identified as Bi0 and Bi3+ are correlated. The most
prominent effect of the simultaneous milling and doping on the thermoelectric properties is a decrease
in the total thermal conductivity (κ) with increasing Bi content, in relation with the increasing amount
of famatinite and skinnerite contents. The lowest value of κ was achieved for x = 0.2 (1.1 W m−1 K
−1 at 675 K). However, this sample also manifests the lowest electrical conductivity σ, combined with
relatively unchanged values for the Seebeck coefficient (S) compared with the un-doped sample.
Overall, the lowered electrical performances outweigh the benefits from the decrease in thermal
conductivity and the resulting figure-of-merit values illustrate a degradation effect of Bi doping on
the thermoelectric properties of tetrahedrite in these synthesis conditions.
Keywords
tetrahedrite, doping, bismuth, high-energy milling, thermoelectricity
Citation
Baláž P, Guilmeau E, Achimovičová M, Baláž M, Daneu N, Dobrozhan O, Kaňuchová M. Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance. Nanomaterials. 2021; 11(6):1386. https://doi.org/10.3390/nano11061386