Statistical theory of self-similarly distributed fields

dc.contributor.authorOliemskoi, Oleksandr Ivanovych
dc.contributor.authorShuda, Iryna Oleksandrivna
dc.contributor.authorОлємской, Олександр Іванович
dc.contributor.authorОлемской, Александр Иванович
dc.contributor.authorШуда, Ірина Олександрівна
dc.contributor.authorШуда, Ирина Александровна
dc.date.accessioned2011-01-27T13:11:06Z
dc.date.available2011-01-27T13:11:06Z
dc.date.issued2009
dc.description.abstractA field theory is built for self-similar statistical systems with both generating functional being the Mellin transform of the Tsallis exponential and generator of the scale transformation that is reduced to the Jackson derivate. With such a choice, the role of a fluctuating order parameter is shown to play deformed logarithm of the amplitude of a hydrodynamic mode. Within the harmonic approach, deformed partition function and moments of the order parameter of lowers powers are found. A set of equations for the generating functional is obtained to take into account constrains and symmetry of the statistical system. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2729ru_RU
dc.identifier.citationOlemskoy, A.I. Statistical theory of self-similarly distributed fields [Текст] / A.I. Olemskoy, I.A. Shuda // Physics Letters A. — 2009. — Vol. 373. — issue 44. — p. 4012-4016ru_RU
dc.identifier.issn0375-9601
dc.identifier.sici0000-0003-0184-8057en
dc.identifier.urihttp://essuir.sumdu.edu.ua/handle/123456789/2729
dc.language.isoenru_RU
dc.publisherPhysics Letters Aru_RU
dc.rights.uricneen_US
dc.subjectfiled theoryru_RU
dc.subjectgenerating functionalru_RU
dc.subjectjackson derivateru_RU
dc.subjectdeformationru_RU
dc.titleStatistical theory of self-similarly distributed fieldsru_RU
dc.typeArticleru_RU

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Statistical theory of self-similarly distributed fields.pdf
Size:
318.23 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.35 KB
Format:
Item-specific license agreed upon to submission
Description: