Shape Dependent Optical Properties of GaAs Quantum Dot: A Simulation Study
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Sumy State University
Article
Date of Defense
Scientific Director
Speciality
Date of Presentation
Abstract
The present paper deals with the simulation study of the GaAs quantum dot with different shapes such as cuboid, cylinder, dome, cone, and pyramid. We have simulated various structures and investigated the shape dependent optical properties using open source simulation tool available on the NanoHub platform. This simulation tool can simulate the simple as well as multilayer zero-dimensional structures by solving Schrödinger equations. The results suggested that the energy states vary according to the shape and
higher energy states are observed for cone-shaped whereas, cuboid shape shows lower energy states for zero-dimensional structure. Furthermore, optical simulation study suggested that the cuboid and cylinder shapes show maximum absorption whereas, minimum absorption is observed for the dome-shape. The higher absorption is due to the higher surface area of cuboid and cylinder shape, whereas, the insufficient
polarization angle of the incident light lowers the absorption for the dome shape structure. Furthermore, the absorption property is not significantly altered during different temperature environments. The integrated absorption results suggested that the cuboid and cylinder shapes have higher absorption whereas, minimum integrated absorption is observed for the cone and pyramid shape zero-dimensional structures. The present results pave the way towards optimization of various parameters of quantum dot for optoelectronic applications.
У роботі розглянуто моделювання квантової точки GaAs з різними формами, такими як кубічна, циліндрична, куполоподібна, конусоподібна і пірамідальна. Проведено моделювання різних структур і досліджено оптичні властивості в залежності від форми квантової точки, використовуючи інструмент моделювання з відкритим вхідним кодом, доступний на платформі NanoHub. За його допомогою мож- на моделювати як прості, так і багатошарові структури нульової розмірності, розв’язуючи рівняння Шредінгера. Отримані результати свідчать про те, що енергетичні стани змінюються в залежності від форми квантової точки, для конусоподібних точок спостерігаються більш високі енергетичні стани. Крім того, моделювання показало, що кубічна і циліндрична форми мають максимальне поглинання, тоді як мінімальне поглинання спостерігається для куполоподібної форми. Більш високе поглинання відбувається за рахунок більшої площі поверхні кубічної і циліндричної форм, тоді як недостатній кут поляризації падаючого світла знижує поглинання для структури куполоподібної форми. Крім того, поглинальна властивість суттєво не змінюється при різних температурах середовища. Результати інтегрованого поглинання показали, що кубічна і циліндрична форми мають більш високе поглинання, тоді як мінімальне поглинання спостерігається для конусоподібної і пірамідальної форм структур нульової розмірності. Наведені результати відкривають шлях до оптимізації різних параметрів квантової точки для оптоелектронних приладів.
У роботі розглянуто моделювання квантової точки GaAs з різними формами, такими як кубічна, циліндрична, куполоподібна, конусоподібна і пірамідальна. Проведено моделювання різних структур і досліджено оптичні властивості в залежності від форми квантової точки, використовуючи інструмент моделювання з відкритим вхідним кодом, доступний на платформі NanoHub. За його допомогою мож- на моделювати як прості, так і багатошарові структури нульової розмірності, розв’язуючи рівняння Шредінгера. Отримані результати свідчать про те, що енергетичні стани змінюються в залежності від форми квантової точки, для конусоподібних точок спостерігаються більш високі енергетичні стани. Крім того, моделювання показало, що кубічна і циліндрична форми мають максимальне поглинання, тоді як мінімальне поглинання спостерігається для куполоподібної форми. Більш високе поглинання відбувається за рахунок більшої площі поверхні кубічної і циліндричної форм, тоді як недостатній кут поляризації падаючого світла знижує поглинання для структури куполоподібної форми. Крім того, поглинальна властивість суттєво не змінюється при різних температурах середовища. Результати інтегрованого поглинання показали, що кубічна і циліндрична форми мають більш високе поглинання, тоді як мінімальне поглинання спостерігається для конусоподібної і пірамідальної форм структур нульової розмірності. Наведені результати відкривають шлях до оптимізації різних параметрів квантової точки для оптоелектронних приладів.
Keywords
quantum dot, optical properties, GaAs, simulation, квантова точка, оптичні властивостіі, моделювання
Citation
Shape Dependent Optical Properties of GaAs Quantum Dot: A Simulation Study [Текст] / K.D. Kadam, S.L. Patil, H.S. Patil [et al.] // Журнал нано- та електронної фізики. – 2019. – Т.11, № 1. – 01013(4cc). - DOI: 10.21272/jnep.11(1).01013.