Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Sumy State University
Article

Date of Defense

Scientific Director

Speciality

Date of Presentation

Abstract

The selectivity is one of the main challenges to develop a gas sensor, the good chemical species detection in a gaseous mixture decreasing the missed detections. The present paper proposes a new solution for gas sensor selectivity based on artificial neural networks (ANNs) and fuzzy logic (FL) algorithm. We first use ANNs to develop a gas sensor model in order to accurately express its behavior. In a second step, the FL and Matlab environment are used to create a database for a selective model, where the response of this one only depends on one chemical species. Analytical models for the gas sensor and its selective model are implemented into a Performance Simulation Program with Integrated Circuit Emphasis (PSPICE) simulator as an electrical circuit in order to prove the similarity of the analytical model output with that of the MQ-9 gas sensor where the output of the selective model only depends on one gas. Our results indicate the capability of the ANN-FL hybrid modeling for an accurate sensing analysis.

Keywords

fuzzy logic, artificial neural networks, gas sensor, selectivity, analytical model, selective model

Citation

Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling / S. Kouda, A. Dendouga, S. Barra, T. Bendib // Журнал нано- та електронної фізики. - 2018. - Т.10, № 6. - 06011. - DOI: 10.21272/jnep.10(6).06011

Endorsement

Review

Supplemented By

Referenced By