Churn Rate Modeling for Telecommunication Operators Using Data Science Methods

dc.contributor.authorZatonatska, T.
dc.contributor.authorFareniuk, Y.
dc.contributor.authorShpyrko, V.
dc.date.accessioned2023-07-04T08:50:20Z
dc.date.available2023-07-04T08:50:20Z
dc.date.issued2023
dc.description.abstractТелекомунікаційні компанії функціонують на ринку з надзвичайно високою конкуренцією. Залучення нового клієнта в 5-10 разів дорожче, ніж утримання існуючого. Таким чином, ефективне управління відтоком абонентів і розуміння його причин стали досить актуальними завданнями для операторів мобільного зв'язку. У зв'язку з цим прогнозування відтоку абонентів через активність конкурентів стає дуже важливим. Data Science і машинне навчання створюють широкі можливості для вирішення цього завдання, щоб оцінити рівень задоволеності клієнтів послугами компанії, виявити фактори, що викликають незадоволення, і передбачити, які клієнти мають більший ризик відмовитися від послуг і змінити постачальника. Компанія, яка впроваджує аналіз даних і моделювання для розробки моделей прогнозування відтоку клієнтів, має можливість покращити управління відтоком клієнтів і підвищити результати бізнесу. Метою дослідження є застосування моделей машинного навчання для телекомунікаційної компанії, зокрема побудова моделей для прогнозування відтоку користувачів і доведення того, що моделі Data Science і машинне навчання є якісними та ефективними інструментами для вирішення завдань прогнозування ключових маркетингових показників телекомунікаційної компанії. На прикладі Telco у статті представлено результати різних моделей класифікації, таких як логістична регресія, Random Forest, SVM та XGBoost з використанням мови програмування Python. Всі моделі мають високий рівень якості (загальна точність більше 80%). Таким чином, дослідження доводить можливість та доцільність використання моделей у подальшій класифікації клієнтів для прогнозування відтоку абонентів (тих клієнтів, які можуть відмовитися від послуг компанії) та мінімізації відтоку споживачів на основі цього. Виявлено ключові фактори, що впливають на відтік клієнтів, і вони створюють основу для майбутнього прогнозу відтоку. Впровадження моделей прогнозування відтоку абонентів допоможе зменшити його і зберегти їх лояльність. Результати дослідження можуть бути використані для оптимізації маркетингової діяльності з управління відтоком споживачів компаній ринку телекомунікацій шляхом прийняття ефективних рішень на основі даних та для вдосконалення математичної методології прогнозування відтоку клієнтів. Таким чином, основні теоретичні та практичні наслідки дослідження полягають у розробці ефективного інструменту прогнозування для менеджерів для контролю ризиків відтоку та збагаченні літератури з аналізу даних і моделей Data Science для визначення критичних факторів, які визначають схильність клієнтів до відтоку.en_US
dc.description.abstractThe telecommunication company functioned in the market with extremely high competitiveness. Attracting new customers needs 5-10 times more expenses than maintaining an existing one. As a result, effective customer churn management and analysis of the reasons for customer churn are vital tasks for telecommunication operators. As a result, predicting subscriber churn by switching on the competitors becomes very important. Data Science and machine learning create enormous opportunities for solving this task to evaluate customer satisfaction with company services, determine factors that cause disappointment, and forecast which clients are at a greater risk of abandoning and changing services suppliers. A company that implements data analysis and modelling to develop customer churn prediction models has an opportunity to improve customer churn management and increase business results. The purposes of the research are the application of machine learning models for a telecommunications company, in particular, the construction of models for predicting the user churn rate and proving that Data Science models and machine learning are high-quality and effective tools for solving the tasks of forecasting the key marketing metrics of a telecommunications company. Based on the example of Telco, the article contains the results of the implementation of various models for classification, such as logistic regression, Random Forest, SVM, and XGBoost, using Python programming language. All models are characterised by high quality (the general accuracy is over 80%). So, the paper demonstrates the feasibility and possibility of implementing the model to classify customers in the future to anticipate subscriber churn (clients who may abandon the company's services) and minimise consumer outflow based on this. The main factors influencing customer churn are established, which is basic information for further forecasting client outflow. Customer outflow prediction models implementation will help to reduce customer churn and maintain their loyalty. The research results can be useful for optimising marketing activity of managing the outflow of consumers of companies on the telecommunication market by developing effective decisions based on data and improving the mathematical methodology of forecasting the outflow of consumers. Therefore, the study's main theoretical and practical achievements are to develop an efficient forecasting tool for enterprises to control outflow risks and to enrich the research on data analysis and Data Science methodology to identify essential factors that determine the propensity of customers to churn.en_US
dc.identifier.citationZatonatska, T., Fareniuk, Y., & Shpyrko, V. (2023). Churn Rate Modeling for Telecommunication Operators Using Data Science Methods. Marketing and Management of Innovations, 2, 163–173. https://doi.org/10.21272/mmi.2023.2-15en_US
dc.identifier.urihttps://essuir.sumdu.edu.ua/handle/123456789/92322
dc.language.isoenen_US
dc.publisherSumy State Universityen_US
dc.rights.uriCC BY 4.0en_US
dc.subjectвідтікen_US
dc.subjectспоживачen_US
dc.subjectData Scienceen_US
dc.subjectпрогнозуванняen_US
dc.subjectклієнтen_US
dc.subjectмашинне навчанняen_US
dc.subjectмаркетингen_US
dc.subjectмоделюванняen_US
dc.subjectchurnen_US
dc.subjectclienten_US
dc.subjectconsumeren_US
dc.subjectData Scienceen_US
dc.subjectforecastingen_US
dc.subjectmachine learningen_US
dc.subjectmarketingen_US
dc.subjectmodellingen_US
dc.subjectoutflowen_US
dc.titleChurn Rate Modeling for Telecommunication Operators Using Data Science Methodsen_US
dc.title.alternativeМоделювання рівня відтоку для телекомоператорів з використанням методів Data Scienceen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Zatonatska_mmi_2_2023.pdf
Size:
589.82 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.96 KB
Format:
Item-specific license agreed upon to submission
Description: