Journal of Engineering Sciences / Журнал інженерних наук
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326
Browse
4 results
Search Results
Item Digitization of Architectural Heritage Objects Using Photogrammetry: Sumy Region Case Study(Sumy State University, 2025) Tytarenko, I.; Machado, J.; Павленко, Іван Володимирович; Pavlenko, Ivan VolodymyrovychDue to a full-scale russian aggression against Ukraine, the preservation of cultural heritage is becoming urgent, which necessitates the need for modern digital technologies for conservation and virtual 3D reconstruction of destroyed objects. The article aims to provide a virtual 3D reconstruction of cultural heritage objects using the application of photogrammetry. The results of the study allow for 3D modeling of the landscape of the Zelenyi Hai archaeological complex and lost cultural heritage objects in the Sumy Region. At the first stage of the research, archival sources were analyzed and digitized. Next, changes in relief, cartographic deformations, and spatial dynamics of the terrain were studied. The developed algorithm for overlaying maps with different degrees of accuracy (satellite images, orthophotomaps, etc.) ensured designing reliable digital fundamentals for further 3D reconstruction of destroyed objects. At the main stage of the research, a landscape in Zelenyi Hai and the Kondratiev Manor in Stare Selo were considered. The resulting 3D models open new opportunities for studying, preserving, and virtual 3D reconstructing of cultural heritage objects, especially in modern global challenges. To increase the accuracy of 3D reconstructions and detect hidden defects, integrating photogrammetry with other technologies (LiDAR, thermal imaging scanning, artificial intelligence, and augmented reality) was analyzed. Moreover, differences between photogrammetry for buildings and landscapes were also discussed.Item Effect of erosion on surface roughness and hydromechanical characteristics of abrasive-jet machining(Sumy State University, 2024) Baha, V.; Pitel, J.; Павленко, Іван Володимирович; Pavlenko, Ivan VolodymyrovychThe article contains the fundamental results of the experimental and numerical investigations for pneumoabrasive unit nozzles with different geometries. The research was purposed by the pressing need to develop an inexpensive and effective working nozzle design of the air-abrasive unit which can be applied for surface processing before some technological processes are performed, as well as for surface coating, descaling after thermal treatment, processing of hollow holes of the crankshafts, smoothing of the inner surfaces of the narrow channels between the impeller blades after electric discharge machining for ultrahigh-pressure combination compressors. Several designs were considered, ranging from the simplest to those with a complicated inner channel geometry. The impact of the nozzle material and challenging inner surface application on its characteristics has also been studied. The research was done using the application of modern CFD complexes for numerical modeling of the air-abrasive mixture discharge from the working nozzle of the pneumo-abrasive unit. In addition, physical experimentation was provided. The methods applied in the research allow for profound, systematic research of spraying units operating on the air-abrasive mixture within a wide range of geometrical and mode parameters. The novelty of the gained results lies in the development of the mathematical model of the pneumo-abrasive nozzle operating process, the working out of a cheaper nozzle design, getting information about air-abrasive mixture distribution along the nozzle length, giving practical recommendations for calculation and designing a working nozzle for the jet-abrasive unit.Item Design and manufacturing of polymer composite materials using quality management methods(Sumy State University, 2023) Берладір, Христина Володимирівна; Берладир, Кристина Владимировна; Berladir, Khrystyna Volodymyrivna; Mitalova, Z.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Trojanowska, J.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Руденко, Павло Володимирович; Руденко, Павел Владимирович; Rudenko, Pavlo VolodymyrovychMany factors influence the design and manufacturing of products from polymer composite materials. The expert assessment method was applied in the article for the corresponding analysis. A cause-and-effect diagram was built as a result of a preliminary analysis of the influence of factors on the primary indicator of product quality indicators (e.g., wear resistance). Based on the expert assessment results and quality function deployment analysis, the most critical factors affecting wear resistance were obtained: polymer brand, filler shape and size, technological parameters of mixing, pressing, sintering, and mechanical processing. Their impact was studied to establish quantitative dependencies. A stable value of the wear resistance of the product in the manufacturing process can be ensured by timely adjustment of the mixing, pressing, and sintering modes. As a result of the structural analysis of the process of developing materials with predetermined properties at the enterprise according to the IDEF0 methodology, the importance of assessing the risks associated with the process of multi-criteria optimization of their main quality indicators was confirmed.Item Movement monitoring system for a pneumatic muscle actuator(Sumy State University, 2023) Соколов, Олександр Сергійович; Соколов, Александр Сергеевич; Sokolov, Oleksandr Serhiiovych; Hosovsky, A.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan VolodymyrovychRecent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.