Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 8 of 8
  • Item
    A framework and taxonomy for categorizing industrial symbiosis in manufacturing
    (Sumy State University, 2025) Jakobs, L.; Hofer, A.; Rauch, E.
    The industrial sector is a significant contributor to global waste, discarding vast amounts annually, which results in both environmental pollution and economic losses. A promising solution is industrial symbiosis (IS), where companies (often from different industries) identify synergies and engage in the exchange of materials, energy, water, and by-products, aiming to close the loop and enhance resource efficiency. Despite growing interest and numerous examples, comprehensive taxonomies for categorizing IS practices in manufacturing remain scarce, as existing studies often focus on individual case studies. This study addresses this gap by proposing a new general taxonomy for the manufacturing sector. Relevant studies were analyzed and synthesized through a systematic literature review of 61 studies, with 22 selected for in-depth analysis of existing IS taxonomies. The findings were refined and validated through iterative expert input, resulting in a three-level taxonomy comprising 4 primary categories, 26 secondary categories, and 119 tertiary categories. The proposed classification provides a holistic framework tailored to the manufacturing sector, enabling practitioners and researchers to gain deeper insights into IS networks and develop effective IS strategies. Future research should validate these categories through empirical studies and explore their practical applications in different manufacturing settings.
  • Item
    Optimal management in the operation of complex technical systems
    (Sumy State University, 2024) Дядюра, Костянтин Олександрович; Diadiura, Kostiantyn Oleksandrovych; Oborskyi, G.; Prokopovych, I.; Khamitov, V.; Holubiev, M.
    Developing a cost management system for a complex technical system (CTS) at the stages of its life cycle is a modern trend aimed at creating sustainable cooperation ties based on requirements, including those of manufacturers and consumers. The article explores the concept of a complex technical system. The principles and properties of a complex technical system were described. A model of a procedure for checking the operability of a complex technical system with an arbitrary distribution of the time of independent manifestation of a failure was proposed for the example of compressor station equipment. Models of operation of complex technical systems based on information about their state were considered. It was also shown how to optimize maintenance decisions for these systems in terms of the minimum average unit cost and how reliable this ensures. Additionally, proof of the existence of an optimal verification strategy was given. An algorithm for determining the moments of verification was developed to ensure the minimum cost. The methods of collecting, processing, and effectively using information for making decisions about the technical condition of complex products and the possibility of further exploitation were improved based on selecting informative diagnostic features and constructing models that comprehensively consider the maximum and current level of their parameters. This allowed for the quality of the final products to be ensured. The practical use of the proposed methods of diagnosis and forecasting made it possible to increase the actual CTS resource by 1.5–2.0 times. This also increased the productivity of the technological process by 1.6 times due to the reduction of the number of stops for maintenance for replacement, adjustments, and sub-adjustments. As a result, the value of the lack of basic production was reduced from 1.2 % to 0.8 %, and the cost of manufacturing products was decreased by 1.2–2.0 times.
  • Item
    Design and manufacturing of polymer composite materials using quality management methods
    (Sumy State University, 2023) Берладір, Христина Володимирівна; Берладир, Кристина Владимировна; Berladir, Khrystyna Volodymyrivna; Mitalova, Z.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Trojanowska, J.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Руденко, Павло Володимирович; Руденко, Павел Владимирович; Rudenko, Pavlo Volodymyrovych
    Many factors influence the design and manufacturing of products from polymer composite materials. The expert assessment method was applied in the article for the corresponding analysis. A cause-and-effect diagram was built as a result of a preliminary analysis of the influence of factors on the primary indicator of product quality indicators (e.g., wear resistance). Based on the expert assessment results and quality function deployment analysis, the most critical factors affecting wear resistance were obtained: polymer brand, filler shape and size, technological parameters of mixing, pressing, sintering, and mechanical processing. Their impact was studied to establish quantitative dependencies. A stable value of the wear resistance of the product in the manufacturing process can be ensured by timely adjustment of the mixing, pressing, and sintering modes. As a result of the structural analysis of the process of developing materials with predetermined properties at the enterprise according to the IDEF0 methodology, the importance of assessing the risks associated with the process of multi-criteria optimization of their main quality indicators was confirmed.
  • Item
    Standardizing life cycle organization: A synergetic quality management approach
    (Sumy State University, 2023) Prokopovych, I.V.; Kokhanov, A.B.; Khamitov, V.M.; Tikhenko, V.M.; Dašić, P.
    Standardization is essential for innovation (on the impacts on design, manufacturing, and operation processes) and its dissemination, both within a country and internationally. A phenomenological information model has been developed for the system of standards, which will be used as an information base for integrated quality management systems, environmental safety, and energy saving depending on the type of products, requirements of technical regulations, and conformity assessment procedures. Phase portraits of the life cycle system of complex products were constructed, and a general expression for the Lyapunov exponents characterizing the overall behavior of the dynamic system in phase space was obtained. The presence of particular areas to which, regardless of the initial conditions, all phase trajectories rapidly evolve has been established. The critical conditions for the control parameters were found. A diagram was constructed that determines the stability of the system states of the life cycle of complex products. It was found that the processes of the life cycle of complex products are carried out in two stages: in the first, there is a rapid evolution of components and parameters of technical and software tools, as well as energetic elements of functional subsystems, which is reflected in a specific attractive section of phase portraits, in the second, further slow development along it.
  • Item
    The efficiency of collaborative assembling cells
    (Sumy State University, 2022) Андрусишин, Владислав Костянтинович; Андрусишин, Владислав Костантинович; Andrusyshyn, Vladyslav Kostiantynovych; Luscinski, S.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    To produce competitive products, it is necessary to consider their permanent modernization and adaptation to the emerging needs of a consumer. This feature of up-to-date production inevitably leads to design complexities. As a result, the complexity of a technological assembly process increases, which is a new challenge for enterprises. Simultaneously, in most cases, assembly operations are performed manually due to the complexity or impossibility of automating the assembling process for an extensive range of products. This fact is due to the insufficient flexibility of automation systems. Remarkably, this approach has significant drawbacks, i.e., low productivity and risk of chronic diseases. To solve this problem, the use of collaborative systems was proposed. Such systems have the advantages of both humans and automation tools. As a result, industrial robots can be applied as automation tools. However, when using industrial robots next to workers, the safety requirements are significantly increased since the infliction of industrial injuries is unacceptable. After considering all the above, the article deals with a new scientific and methodological approach to designing security systems of collaborative production cells and their design and effectiveness verification.
  • Item
    Analysis of nanoparticles characteristics with TOPSIS for their manufacture optimization
    (Sumy State University, 2022) Javanbakht, T.
    The present study focuses on the comparative analysis of superparamagnetic iron oxide nanoparticles (SPIONs) characteristics with the TOPSIS method. The prediction of the characteristics of SPIONs is required for better manufacturing of these nanoparticles. Although the characteristics of these nanoparticles have been investigated, no research has been done on their comparison in order to determine which one of their surface functionalities would be more appropriate for their diverse applications. The objective of this study was to analyze the characteristics of SPIONs without or with surface charge with a prediction model and TOPSIS in order to determine the best nanoparticles. Moreover, the effect of inappropriate consideration of their cost criterion on their ranks was explored with the modified TOPSIS. This analysis showed that the characteristics of SPIONs such as antibiofilm activity, hemocompatibility, activity with hydrogen peroxide, rheological properties, and the labour of their chemical synthesis could affect their ranking. Neutral SPIONs, negatively charged SPIONs, and positively charged SPIONs were ranked as the first, second, and third candidates, respectively. However, the improvement of the activity of positively charged SPIONs with hydrogen peroxide showed an increase to 0.3 instead of 0.2, which resulted in a better rank of these nanoparticles in comparison with that of the same nanoparticles in the first analysis series. One of the advantages of this study was to determine the impact of the characteristics of SPIONs on their ranking for their manufacturing. The other advantage was getting the information for further comparative study of these nanoparticles with the others. The results of this work can be used in manufacturing engineering and materials science.
  • Item
    Digital model and assembling of a lathe
    (Sumy State University, 2022) Besedin, M.; Popowska, M.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Trojanowska, J.
    The article aims at developing a digital model of a lathe and the related technology for its assembling. The study is based on analyzing the service purpose and technological capabilities of modern modular machine tools, justification and development of the machine tool design according to the specified production conditions, and development of a technological process for assembling the proposed modular machine tool. The geometric modeling techniques and the design documentation were implemented to justify the rational choice of design parameters of the machine tool design and its spatial model. The proposed approach also considers structural elements and the relationships between them. As a result, a conceptual approach was proposed to design technological processes of lathe assembly with a wide range of technological capabilities. It allows implementation of the up-to-date strategy from idea to finished product at industrial enterprises. The practical significance of the obtained results for the machine-building industry is in the proposed practical recommendations for developing the technological process for assembling lathes.
  • Item
    Investigation on the rheological properties of polydimethylsiloxane
    (Sumy State University, 2022) Javanbakht, T.
    This paper focuses on studying the rheological properties of polydimethylsiloxane (PDMS). This polymer has been used to fabricate membranes and filters in engineering. The analysis of the rheological properties of this polymer is required for a further investigation of its mechanical behavior. In this study, the rheological behavior of PDMS is reported at different temperatures. This polymer showed steady shear viscosity during a short duration. However, this behavior changed with time and increased more with increasing temperature. The impact of the temperature increase was also observed when the shear viscosity of PDMS increased with shear strain. The increase of torque with shear strain and time was observed at different temperatures. Shear stress increased linearly with the shear rate at 20 °C and 40 °C. As expected, the deformation of the polymer required less shear stress with the increase of temperature. However, the change of shear stress with the shear rate at 60 °C was not linear, and the slope of the curve increased more at high shear rates. The results of this investigation can provide the required information for a better fabrication of membranes and filters with this polymer.