Видання зареєстровані авторами шляхом самоархівування
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1
Browse
3 results
Search Results
Item Impact of Electrospinning Parameters and Post-Treatment Method on Antibacterial and Antibiofilm Activity of Chitosan Nanofibers(MDPI, 2022) Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Radwan-Praglowska, J.; Голубнича, Вікторія Миколаївна; Голубничая, Виктория Николаевна; Holubnycha, Viktoriia Mykolaivna; Самохін, Євген Олександрович; Самохин, Евгений Александрович; Samokhin, Yevhen Oleksandrovych; Яновська, Ганна Олександрівна; Яновская, Анна Александровна; Yanovska, Hanna Oleksandrivna; Варава, Юлія Валентинівна; Варава, Юлия Валентиновна; Varava, Yuliia Valentynivna; Дєдкова, Катерина Андріївна; Дедкова, Екатерина Андреевна; Diedkova, Kateryna Andriivna; Janus, L.; Погорєлов, Максим Володимирович; Погорелов, Максим Владимирович; Pohorielov, Maksym VolodymyrovychChitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.Item Complementary Effect of Non-Persistent Silver Nano- Architectures and Chlorhexidine on Infected Wound Healing(MDPI, 2021) Пернаков, Микола Станіславович; Пернаков, Николай Станиславович; Pernakov, Mykola Stanislavovych; Ermini, M.L.; Sulaieva, O.; Cassano, D.; Santucci, M.; Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Giannone, G.; Юсупова, Азіза Фарходівна; Юсупова, Азиза Фархадовна; Yusupova, Aziza Farkhodivna; Любчак, Ірина Володимирівна; Любчак, Ирина Владимировна; Liubchak, Iryna Volodymyrivna; Hristova, M.T.; Savchenko, A.; Голубнича, Вікторія Миколаївна; Голубничая, Виктория Николаевна; Holubnycha, Viktoriia Mykolaivna; Voliani, V.; Погорєлов, Максим Володимирович; Погорелов, Максим Владимирович; Pohorielov, Maksym VolodymyrovychSurgical site infection (SSI) substantially contributes each year to patients’ morbidity and mortality, accounting for about 15% of all nosocomial infections. SSI drastically increases the rehab stint and expenses while jeopardizing health outcomes. Besides prevention, the treatment regime relies on an adequate antibiotic therapy. On the other hand, resistant bacterial strains have currently reached up to 34.3% of the total infections, and this percentage grows annually, reducing the efficacy of the common treatment schemes. Thus, new antibacterial strategies are urgently demanded. Here, we demonstrated in rats the effectiveness of non-persistent silver nano-architectures (AgNAs) in infected wound healing together with their synergistic action in combination with chlorhexidine. Besides the in vivo efficacy evaluation, we performed analysis of the bacteriological profile of purulent wound, histological evaluations, and macrophages polarization quantifications to further validate our findings and elucidate the possible mechanisms of AgNAs action on wound healing. These findings open the way for the composition of robust multifunctional nanoplatforms for the translation of safe and efficient topical treatments of SSI.Item Formation of a Bacteriostatic Surface on ZrNb Alloy via Anodization in a Solution Containing Cu Nanoparticles(MDPI, 2020) Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Олешко, Олександр Миколайович; Олешко, Александр Николаевич; Oleshko, Oleksandr Mykolaiovych; Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Дейнека, Володимир Миколайович; Дейнека, Владимир Николаевич; Deineka, Volodymyr Mykolaiovych; Голубнича, Вікторія Миколаївна; Голубничая, Виктория Николаевна; Holubnycha, Viktoriia Mykolaivna; Mishchenko, O.; Kazek-Kęsik, A.; Jakobik-Kolon, A.; Пшеничний, Роман Миколайович; Пшеничный, Роман Николаевич; Pshenychnyi, Roman Mykolaiovych; Leśniak-Ziółkowska, K.; Kalinkevich, O.; Kalinkevich, A.; Pisarek, M.; Simka, W.; Погорєлов, Максим Володимирович; Погорелов, Максим Владимирович; Pohorielov, Maksym VolodymyrovychHigh strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca–P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.