Formation of a Bacteriostatic Surface on ZrNb Alloy via Anodization in a Solution Containing Cu Nanoparticles
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Article
Date of Defense
Scientific Director
Speciality
Date of Presentation
Abstract
High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability,
and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface
plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial
and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a
promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study,
we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation)
coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the
CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning
Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction)
methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and
antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca–P solution with CuNPs
formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better
osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade
antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended
for further investigation.
Keywords
plasma electrolytic oxidation, dental implant, zirconium-niobium alloy, biocompatibility, bacterial adhesion
Citation
Korniienko V, Oleshko O, Husak Y, Deineka V, Holubnycha V, Mishchenko O, Kazek-Kęsik A, Jakóbik-Kolon A, Pshenychnyi R, Leśniak-Ziółkowska K, Kalinkevich O, Kalinkevich A, Pisarek M, Simka W, Pogorielov M. Formation of a Bacteriostatic Surface on ZrNb Alloy via Anodization in a Solution Containing Cu Nanoparticles. Materials. 2020; 13(18):3913. https://doi.org/10.3390/ma13183913