Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/82398
Or use following links to share this resource in social networks: Recommend this item
Title Financial, economic, environmental and social determinants for Ukrainian regions differentiation by the vulnerability level to COVID-19
Authors Kuzmenko, Olha Vitaliivna  
Lieonov, Serhii Viacheslavovych  
Kashcha, Mariia Oleksiivna  
Keywords COVID-19
епідеміологічні загрози
эпидемиологические угрозы
epidemiological threats
ретроспективні портрети вразливості регіонів до COVID-19
ретроспективные портреты уязвимости регионов к COVID-19
retrospective portraits of regional vulnerability to COVID-19
покрокова нелінійна регресія
пошаговая нелинейная регрессия
step-by-step nonlinear regression
захворюваність
заболеваемость
morbidity
регіональна диференціація захворюваності
региональная дифференциация заболеваемости
regional morbidity differentiation
пандемія
пандемия
pandemic
мультиколінеарність
мультиколинеарнисть
multicollinearity
гетероскедастичність
гетероскедастичность
heteroskedasticity
Type Article
Date of Issue 2020
URI https://essuir.sumdu.edu.ua/handle/123456789/82398
Publisher Фінансово-кредитна діяльність: проблеми теорії і практики
License Copyright not evaluated
Citation Kuzmenko O., Lieonov S., Kashcha M. Financial, economic, environmental and social determinants for Ukrainian regions differentiation by the vulnerability level to COVID-19 // Financial and credit activities: problems of theory and practice. 2020. №3(34). P. 270-282
Abstract Як свідчить перебіг пандемії COVID-19, регіони України суттєво відрізняються за рівнем вразливості населення до цієї інфекції. Причини регіональної диференціації захворюваності та смертності населення від COVID-19 ідентифікуються певними патернами (комбінаціями) факторів, які кумулятивно накопичуючись протягом тривалого періоду часу, сформували так звані «ретроспективних портретів вразливості регіону до COVID-19» для кожного регіону. Основною метою дослідження є визначення таких комбінацій фінансових, економічних, екологічних та соціальних факторів, які обумовили різну кількість летальних випадків та захворюваності серед населення різних регіонів України від COVID-19. Дослідження здійснено на основі побудованої просторової нелінійної моделі, в якій за ступінчастим алгоритмом окремі факторні змінні додавалися / вилучалися зі специфікацій моделі покроково методом Ейткена залежно від їх кореляції із показниками захворюваності та смертності від COVID-19 в регіоні, до тих пір, поки не була сформована специфікацію моделі з найвищим рівнем адекватності за p-значенням та t-статистикою. Для побудови індивідуальних «ретроспективних портретів вразливості регіону до COVID-19» для кожного регіону побудовані нелінійні багатофакторні регресійні рівняння залежності між результативною ознакою (рівень захворюваності та смертності населення регіону від COVID-19) від змінних – 23 індикаторів соціального, економічного, екологічного та фінансового розвитку кожного регіону України та міста Київ, сформовані кореляційні матриці та побудовано кореляційні плеяди. Перевірка на мутиколінеарність здійснена на основі кореляційної матриці з використанням алгоритму Фаррара-Глобера, перевірка залишків на наявність автокореляції здійснена методом Дарбіна-Уотсона, перевірка на гетероскедастичність здійснена за допомогою тесту рангової кореляції Спирмена. Результати емпіричного аналізу засвідчили, що на рівень захворюваності від COVID-19 та кількість смертельних випадків найбільше впливає показники міграційного руху, кількісний склад населення та екологічна ситуація в регіоні, але також суттєвим є індикатор готовності медичних закладів до якісного обслуговування хворих в період пандемії та динаміка доходів населення. Використання ретроспективних результатів дослідження можуть бути корисними при створенні дорожніх карт окремих регіонів, для подолання наслідків епідеміологічних впливів у майбутньому.
According to the COVID-19 pandemic, the Ukrainian regions significantly differ in the population’s vulnerability to this infection. Specific patterns (combinations) of factors identify the reasons for regional differentiation of morbidity and mortality from COVID-19. They were accumulated over a long period and formed the so-called «retrospective portraits of the region’s vulnerability to COVID-19» for each region. The main purpose of the study is to define such combinations of financial, economic, environmental and social factors causing many deaths and morbidity from COVID-19 among the population of different Ukrainian regions. The study is based on a constructed spatial nonlinear model. According to the step-by-step algorithm, individual factor variables are gradually added / removed from the model specifications by the Aitken method depending on their correlation with morbidity and mortality from COVID-19 in the region until the model’s specification with the highest adequacy by p-value and t-statistics is formed. The nonlinear multifactorial regression equations regarding the dependence of the resulting indicator (the level of morbidity and mortality of the region from COVID-19) on variables — 23 indicators of social, economic, environmental and financial development of each Ukrainian region and Kyiv are built for the creation of the «retrospective portraits of the region’s vulnerability to COVID-19». Besides, the correlation matrices and correlation pleiades are formed. Based on a correlation matrix, the multicollinearity test is performed using the Farrar — Glauber algorithm. The Durbin — Watson method checks residuals for autocorrelation. The heteroskedasticity test is performed using the Spearman rank correlation test. The empirical analysis results show that migration, population size, the environmental situation in the region, a significant index of medical institutions readiness for qualitative patient care during the pandemic and citizens’ income dynamics mostly affect the incidence of COVID-19 and the number of deaths. The retrospective research results can help create road maps of individual regions to overcome the future epidemiological influence effects.
Appears in Collections: Наукові видання (ННІ БТ)

Views

Brazil Brazil
1
China China
1
Germany Germany
1
Indonesia Indonesia
1
Iran Iran
81
Ireland Ireland
1
Israel Israel
7989
Lithuania Lithuania
1
Netherlands Netherlands
321
Pakistan Pakistan
2522
Russia Russia
1
South Africa South Africa
1
Sweden Sweden
1
Ukraine Ukraine
2519
United Kingdom United Kingdom
1
United States United States
7990
Vietnam Vietnam
1

Downloads

China China
161
Indonesia Indonesia
1
Iran Iran
1
Pakistan Pakistan
1
Ukraine Ukraine
162
United Kingdom United Kingdom
1
United States United States
7991

Files

File Size Format Downloads
Kuzmenko_COVID-19_paper.pdf 359,49 kB Adobe PDF 8318

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.