Please use this identifier to cite or link to this item: http://essuir.sumdu.edu.ua/handle/123456789/55740
Or use following links to share this resource in social networks: Recommend this item
Title Feature learning for information-extreme classifier
Authors Moskalenko, Viacheslav Vasylovych  
Moskalenko, А.
Korobov, A.
Keywords coarse coding
Fast Retina Keypoint
feature extraction
machine learning
classifier
information criterion
машинное обучение
классификатор
информационный критерий
машинне навчання
класифікатор
информаційний критерій
Type Conference Papers
Date of Issue 2017
URI http://essuir.sumdu.edu.ua/handle/123456789/55740
Publisher Sumy State University
License
Citation Korobov, A. Feature learning for information-extreme classifier [Текст] / A. Korobov, A. Moskalenko, V. Moskalenko // Advanced Information Systems and Technologies : proceedings of the V international scientific conference, Sumy, May 17-19 2017/ Edited by S.І. Protsenko, V.V. Shendryk. - Sumy : Sumy State University, 2017. - P. 92-94.
Abstract The feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm.
Appears in Collections: Наукові видання (ЕлІТ)

Views

Australia Australia
1
Brazil Brazil
1
China China
1
France France
3
Germany Germany
1
Italy Italy
1
Lithuania Lithuania
1
Sweden Sweden
1
Turkey Turkey
2
Ukraine Ukraine
325
United Kingdom United Kingdom
2105
United States United States
2103
Unknown Country Unknown Country
357

Downloads

China China
4
Germany Germany
1
Ireland Ireland
1
Ukraine Ukraine
324
United Kingdom United Kingdom
1
United States United States
2106
Unknown Country Unknown Country
8

Files

File Size Format Downloads
Korobov_Fast.pdf 837,73 kB Adobe PDF 2445

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.