Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/91568
Or use following links to share this resource in social networks: Recommend this item
Title Modeling a viscoelastic support considering its mass-inertial characteristics during nonstationary vibrations of the beam
Authors Voropay, A.V.
Menshykov, O.V.
Povaliaiev, S.I.
Sharapata, A.S.
Yehorov, P.A.
Keywords Timoshenko multi-span beam
additional viscoelastic support
non-stationary vibration
concentrated mass
Volterra integral equation
Type Article
Date of Issue 2023
URI https://essuir.sumdu.edu.ua/handle/123456789/91568
Publisher Sumy State University
License Creative Commons Attribution 4.0 International License
Citation Voropay A. V., Menshykov O. V., Povaliaiev S. I., Sharapata A. S., Yehorov P. A. (2023). Modeling a viscoelastic support considering its mass-inertial characteristics during nonstationary vibrations of the beam. Journal of Engineering Sciences, Vol. 10(1), pp. D8-D14, doi: 10.21272/jes.2023.10(1).d2
Abstract Non-stationary loading of a mechanical system consisting of a hinged beam and additional support installed in the beam span was studied using a model of the beam deformation based on the Timoshenko hypothesis with considering rotatory inertia and shear. The system of partial differential equations describing the beam deformation was solved by expanding the unknown functions in the Fourier series with subsequent application of the integral Laplace transform. The additional support was assumed to be realistic rather than rigid. Thus it has linearly elastic, viscous, and inertial components. This means that the effect of a part of the support vibrating with the beam was considered such that their displacements coincide. The beam and additional support reaction were replaced by an unknown concentrated external force applied to the beam. This unknown reaction was assumed to be time-dependent. The time law was determined by solving the first kind of Volterra integral equation. The methodology of deriving the integral equation for the unknown reaction was explained. Analytic formulae and results of computations for specific numerical parameters were given. The impact of the mass value on the additional viscoelastic support reaction and the beam deflection at arbitrary points were determined. The research results of this paper can be helpful for engineers in designing multi-span bridges.
Appears in Collections: Journal of Engineering Sciences / Журнал інженерних наук

Views

Iran Iran
1
Ireland Ireland
3
Ukraine Ukraine
14
United States United States
10

Downloads

Iran Iran
1
Poland Poland
1
United Kingdom United Kingdom
1
United States United States
11
Uzbekistan Uzbekistan
1

Files

File Size Format Downloads
Voropay_jes_1_2023.pdf 299,55 kB Adobe PDF 15

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.