Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/93629
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application |
Authors |
Samokhin, Yevhen Oleksandrovych
Varava, Yuliia Valentynivna Diedkova, Kateryna Andriivna Yanko, I. Husak, Yevheniia Volodymyrivna Radwan-Pragłowska, J. Pohorielova, Oksana Serhiivna Janus, Ł. Pohorielov, Maksym Volodymyrovych Korniienko, Viktoriia Volodymyrivna Korniienko, Viktoriia Volodymyrivna |
ORCID |
http://orcid.org/0000-0002-2217-3717 http://orcid.org/0000-0003-4077-8637 http://orcid.org/0000-0001-9372-7791 http://orcid.org/0000-0002-5144-2138 |
Keywords |
антибактеріальні біоматеріали antibacterial biomaterials біосумісність biocompatibility хітозан chitosan електропрядіння electrospinning нановолокна nanofibers полімолочна кислота polylactic acid |
Type | Article |
Date of Issue | 2023 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/93629 |
Publisher | MDPI |
License | Creative Commons Attribution 4.0 International License |
Citation | Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Pragłowska, J.; Pogorielova, O.; Janus, Ł.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. https://doi.org/10.3390/ jfb14080414 |
Abstract |
The present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine. |
Appears in Collections: |
Наукові видання (НН МІ) |
Views
China
147
Ireland
1
Japan
1
Singapore
1006
Ukraine
32
United States
1481
Downloads
China
1
Ukraine
1
United States
2669
Files
File | Size | Format | Downloads |
---|---|---|---|
Samokhin_antibacterial_biomaterials.pdf | 5.74 MB | Adobe PDF | 2671 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.