Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/93629
Or use following links to share this resource in social networks: Recommend this item
Title Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application
Authors Samokhin, Yevhen Oleksandrovych
Varava, Yuliia Valentynivna
Diedkova, Kateryna Andriivna
Yanko, I.
Husak, Yevheniia Volodymyrivna  
Radwan-Pragłowska, J.
Pohorielova, Oksana Serhiivna  
Janus, Ł.
Pohorielov, Maksym Volodymyrovych  
Korniienko, Viktoriia Volodymyrivna  
ORCID http://orcid.org/0000-0002-2217-3717
http://orcid.org/0000-0003-4077-8637
http://orcid.org/0000-0001-9372-7791
http://orcid.org/0000-0002-5144-2138
Keywords антибактеріальні біоматеріали
antibacterial biomaterials
біосумісність
biocompatibility
хітозан
chitosan
електропрядіння
electrospinning
нановолокна
nanofibers
полімолочна кислота
polylactic acid
Type Article
Date of Issue 2023
URI https://essuir.sumdu.edu.ua/handle/123456789/93629
Publisher MDPI
License Creative Commons Attribution 4.0 International License
Citation Samokhin, Y.; Varava, Y.; Diedkova, K.; Yanko, I.; Husak, Y.; Radwan-Pragłowska, J.; Pogorielova, O.; Janus, Ł.; Pogorielov, M.; Korniienko, V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023, 14, 414. https://doi.org/10.3390/ jfb14080414
Abstract The present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine.
Appears in Collections: Наукові видання (НН МІ)

Views

China China
147
Ireland Ireland
1
Singapore Singapore
57
Ukraine Ukraine
32
United States United States
55

Downloads

China China
1
Ukraine Ukraine
1
United States United States
293

Files

File Size Format Downloads
Samokhin_antibacterial_biomaterials.pdf 5,74 MB Adobe PDF 295

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.