Геометрия и топология подмноговидов и анализ на многовидах
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Technical report
Date of Defense
Scientific Director
Speciality
Date of Presentation
Abstract
Доказано, что действительное полное кэлерово выпуклое подмногообразие в евклидовом пространстве расщепляется как метрическое произведение двумерных поверхностей положительной гауссовой кривизны в трехмерных евклидовых пространствах и евклидова подпространства. Дано также обобщение теоремы В.К. Белошапки и С.Н. Бычкова на случай выпуклых подмногообразий произвольной коразмерности. Решена проблема Громова по макроскопическое размерности римановых многообразий, которая сформулирована в виде гипотез. Доказана теорема о нижнем порядке субгармонических в верхней полуплоскости функций бесконечного порядка с полной мерой, распределенной на конечной системе лучей. Найдены необходимые и достаточные условия разрешимости интерполяционной задачи в классе целых функций нулевого порядка.
Keywords
кэлерово выпуклое подмногообразие, гауссова кривизна, коразмерность
Citation
Геометрия и топология подмноговидов и анализ на многовидах [Текст] : отчет о НИР (промежуточный) / Рук. А.А. Борисенко. - Сумы : СумГУ, 2015. - 36 с.