Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/100416
Or use following links to share this resource in social networks: Recommend this item
Title Intelligent Approach for Analyzing Semiconductor Band Gaps in Nanomaterial Systems
Other Titles Інтелектуальний підхід до аналізу заборонених зон у напівпровідникових наноматеріалах
Authors Tingare, B.A.
Kapgate, R.A.
William, P.
Patil, J.M.
Diwan, T.D.
Patare, P.M.
Dhamande, L.S.
ORCID
Keywords машинне навчання
заборонені зони у напівпровіднику
наноматеріали
алгоритм White Shark
стійкий до XGBoost (FWS-RXGBoost)
machine learning
semiconductor band gaps
nanomaterials
fine-tuned White Shark algorithmresilient XGBoost (FWS-RXGBoost)
Type Article
Date of Issue 2025
URI https://essuir.sumdu.edu.ua/handle/123456789/100416
Publisher Sumy State University
License Creative Commons Attribution 4.0 International License
Citation B.A. Tingare et al., J. Nano- Electron. Phys. 17 No 4, 04027 (2025) https://doi.org/10.21272/jnep.17(4).04027
Abstract Аналіз заборонених зон у напівпровідникових наноматеріалах має велике значення для застосування в електроніці. Традиційні підходи мають обмеження в роботі зі складними, нелінійними зв'язками для прогнозування заборонених зон. У роботі пропонується модель FWS-RXGBoost (Fine-Tuned White Shark Algorithm-Resilient XGBoost), яка усуває проблеми, пов'язані з оптимізацією гіперпараметрів XGBoost для більш надійних прогнозів. Використовується набір даних Kaggle про відбитки матеріалів та цільові значення забороненої зони. Для забезпечення точності моделі нормалізація ознак за Z-оцінкою на етапі попередньої обробки стандартизує ознаки, що покращує градієнтне навчання. Оптимізація, натхненна White Shark, досягає балансу між глобальним дослідженням та локальним використанням. Ця модель виявилася більш стійкою до шуму в даних. Були проведені порівняння з моделлю градієнтного бустингу та моделлю Extra Trees. Згідно з показниками RMSE (0,17), MAE (0,10) та R² (0,97), FWS-RXGBoost ефективний для моделювання складних залежностей, пов'язаних з прогнозами забороненої зони. У зв'язку з цим, ці результати показують, що FWS-RXGBoost є надійним, високоточним інструментом для прогнозування ширини заборонених зон напівпровідників і наразі готовий до застосування в будь-яких реальних умовах, де точність є критично важливою. У майбутніх дослідженнях можуть бути використані більш різноманітні набори даних та складні гібридні моделі для розширення можливостей прогнозування.
Аналіз заборонених зон у напівпровідникових наноматеріалах має велике значення для застосування в електроніці. Традиційні підходи мають обмеження в роботі зі складними, нелінійними зв'язками для прогнозування заборонених зон. У роботі пропонується модель FWS-RXGBoost (Fine-Tuned White Shark Algorithm-Resilient XGBoost), яка усуває проблеми, пов'язані з оптимізацією гіперпараметрів XGBoost для більш надійних прогнозів. Використовується набір даних Kaggle про відбитки матеріалів та цільові значення забороненої зони. Для забезпечення точності моделі нормалізація ознак за Z-оцінкою на етапі попередньої обробки стандартизує ознаки, що покращує градієнтне навчання. Оптимізація, натхненна White Shark, досягає балансу між глобальним дослідженням та локальним використанням. Ця модель виявилася більш стійкою до шуму в даних. Були проведені порівняння з моделлю градієнтного бустингу та моделлю Extra Trees. Згідно з показниками RMSE (0,17), MAE (0,10) та R² (0,97), FWS-RXGBoost ефективний для моделювання складних залежностей, пов'язаних з прогнозами забороненої зони. У зв'язку з цим, ці результати показують, що FWS-RXGBoost є надійним, високоточним інструментом для прогнозування ширини заборонених зон напівпровідників і наразі готовий до застосування в будь-яких реальних умовах, де точність є критично важливою. У майбутніх дослідженнях можуть бути використані більш різноманітні набори даних та складні гібридні моделі для розширення можливостей прогнозування.
Appears in Collections: Журнал нано- та електронної фізики (Journal of nano- and electronic physics)

Views

Downloads

Files

File Size Format Downloads
Tingare_jnep_4_2025.pdf 651.23 kB Adobe PDF 0

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.