Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/77555
Or use following links to share this resource in social networks: Recommend this item
Title Analysis of modern approaches for the prediction of electric energy consumption
Authors Kalimoldayev, M.
Drozdenko, Oleksii Oleksandrovych  
Koplyk, Ihor Volodymyrovych  
Marynych, Tetiana Oleksandrivna  
Abdildayeva, А.
Zhukabayeva, T.
ORCID http://orcid.org/0000-0002-0047-739X
http://orcid.org/0000-0003-2217-731X
http://orcid.org/0000-0002-1393-7607
Keywords prediction
power consumption
panel models
autoregression models
neural networks
Type Article
Date of Issue 2020
URI https://essuir.sumdu.edu.ua/handle/123456789/77555
Publisher De Gruyter
License Creative Commons Attribution - NonCommercial 4.0 International
Citation Kalimoldayev, Maksat, Drozdenko, Aleksey, Koplyk, Igor, Marinich, T., Abdildayeva, Assel and Zhukabayeva, Tamara. "Analysis of modern approaches for the prediction of electric energy consumption" Open Engineering, vol. 10, no. 1, 2020, pp. 350-361. https://doi.org/10.1515/eng-2020-0028
Abstract A review of modern methods of forming a mathematical model of power systems and the development of an intelligent information system for monitoring electricity consumption. The main disadvantages and advantages of the existing modeling approaches, as well as their applicability to the energy systems of Ukraine and Kazakhstan, are identified. The main factors that affect the dynamics of energy consumption are identified. A list of the main tasks that need to be implemented in order to develop algorithms for predicting electricity demand for various objects, industries and levels has been developed.
Appears in Collections: Наукові видання (ЕлІТ)

Views

China China
143180474
Germany Germany
293108
Greece Greece
1
Ireland Ireland
82771
Japan Japan
1
Lithuania Lithuania
1
Morocco Morocco
1
Netherlands Netherlands
37984
Singapore Singapore
1
Sweden Sweden
2215
Ukraine Ukraine
286360947
United Kingdom United Kingdom
1006881
United States United States
114057524
Unknown Country Unknown Country
1006882
Vietnam Vietnam
4430

Downloads

Australia Australia
1
Bolivia Bolivia
1
Canada Canada
82770
China China
546033222
Estonia Estonia
1
Germany Germany
1578
India India
293104
Indonesia Indonesia
155
Italy Italy
1
Japan Japan
586209
Kazakhstan Kazakhstan
84934573
Lithuania Lithuania
1
Morocco Morocco
1
Nigeria Nigeria
1
Pakistan Pakistan
1
Peru Peru
55811624
Philippines Philippines
1
Poland Poland
1
Portugal Portugal
1
South Korea South Korea
82769
Sweden Sweden
10909982
Taiwan Taiwan
1
Ukraine Ukraine
286360948
United Arab Emirates United Arab Emirates
1
United Kingdom United Kingdom
293107
United States United States
546033222
Unknown Country Unknown Country
1006875
Venezuela Venezuela
1
Vietnam Vietnam
1

Files

File Size Format Downloads
Kalimoldayev_Drozdenko_Koplyk_Marynych.pdf 515,19 kB Adobe PDF 1532430153

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.